【題目】下列4個(gè)命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,則α的取值范圍是0≤α≤.
其中真命題的序號(hào)是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)= 的定義域?yàn)閇﹣a﹣2,b]
(1)求實(shí)數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實(shí)數(shù)m滿足f(m﹣1)<f(1﹣2m),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x∈(﹣∞,0]時(shí)的解析式為f(x)=x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象并直接寫出它的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓: 與軸的正半軸交于點(diǎn),以為圓心的圓: ()與圓交于, 兩點(diǎn).
(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于, ,當(dāng)直線長(zhǎng)最小時(shí),求直線的方程;
(2)設(shè)是圓上異于, 的任意一點(diǎn),直線、分別與軸交于點(diǎn)和,問是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有3個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人最寶貴的是生命,然而有時(shí)候最不善待生命的恰恰是人類自己,在交通運(yùn)輸業(yè)發(fā)展迅猛的今天,由于不懂得交通法規(guī),以及人們的交通安全觀念和自我保護(hù)意識(shí)還沒有跟上時(shí)代的步伐,那些在交通復(fù)雜多變的地方而引發(fā)的交通事故也是接連不斷.為了警示市民,某市對(duì)近三年內(nèi)某多發(fā)事故路口在每天時(shí)間段內(nèi)發(fā)生的480次事故中隨機(jī)抽取100次進(jìn)行調(diào)研,數(shù)據(jù)按事發(fā)時(shí)間分成8組:(單位:小時(shí)),制成了如圖所示的頻率分布直方圖.
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這480次交通事故發(fā)生在時(shí)間段與的次數(shù);
(Ⅱ)在抽出的100次交通事故中按時(shí)間段采用分層抽樣的方法抽取10次進(jìn)行個(gè)案分析,再?gòu)倪@10次交通事故中選取3次交通事故作重點(diǎn)專題研究.記這3次交通事故中發(fā)生時(shí)間在與的次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,函數(shù).
(1)求的定義域及其零點(diǎn);
(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;
(3)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角.
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com