f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)>x,則( 。
A、f(2)-f(1)>
3
2
B、f(2)-f(1)<
3
2
C、f(2)-f(1)>
5
2
D、f(2)-f(1)<
5
2
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù)g(x)=f(x)-
1
2
x2
,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:構(gòu)造函數(shù)g(x)=f(x)-
1
2
x2
,
則g′(x)=f'(x)-x,
∵f′(x)>x,
∴g′(x)>0,
即函數(shù)g(x)為增函數(shù),
∴g(2)>g(1),
即f(2)-
1
2
×22
f(1)-
1
2
,
∴f(2)-f(1)>
3
2
,
故選:A.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的應(yīng)用,利用條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1F2為直徑的圓交雙曲線某條漸近線于M、N兩點(diǎn),若∠MAN=135°,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=
.
3
cosx
1sinx
.
的圖象向左平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(
x
-
1
3x
12的展開(kāi)式中,x3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lnx=2-ln3,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={1,2},N={1,a2},若M∩N=M,則實(shí)數(shù)a=( 。
A、2
B、
2
C、-
2
D、±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=a(x+b)2+c的圖象如圖所示,則函數(shù)f(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,公差d≠0,若S11=132,a3+ak=24,則正整數(shù)k的值為(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了解學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生視力,將調(diào)查結(jié)果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],…,(5.1,5.4].經(jīng)過(guò)數(shù)據(jù)處理,得到頻率分布表:
分組 頻數(shù) 頻率
(3.9,4.2] 1 0.05
(4.2,4.5] 5 0.25
(4.5,4.8] 9 x
(4.8,5.1] y z
(5.1,5.4] 1 0.05
合計(jì) n 1.00
(Ⅰ)求頻率分布表中未知量n、x、y、z的值;
(Ⅱ)從樣本中隨機(jī)抽取2人,其中視力超過(guò)4.8的人數(shù)記為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案