【題目】是定義在D上的函數(shù),若對D中的任意兩數(shù)),恒有,則稱為定義在D上的C函數(shù).

(1)試判斷函數(shù)是否為定義域上的C函數(shù),并說明理由;

(2)若函數(shù)R上的奇函數(shù),試證明不是R上的C函數(shù);

(3)是定義在D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù)),恒有,則稱為定義在D上的π函數(shù). 已知R上的π函數(shù),m是給定的正整數(shù),,,. 對于滿足條件的任意函數(shù),試求的最大值.

【答案】(1)答案見解析;(2)證明見解析;(3) 的最大值為.

【解析】試題分析:(1)證明是否成立,即可得出結論(2)假設是R上的C函數(shù),取, 則有,結合奇函數(shù)可得,是同理可得,則推出矛盾;(3)對任意,取.由題意, = =,則.

試題解析:(1) C函數(shù),

證明如下:對任意實數(shù)),

==.

, C函數(shù).

(2)假設R上的C函數(shù),,

則有.

是奇函數(shù),所以,所以. (*)

同理,,可證.(*)式矛盾.

不是R上的C函數(shù).

(3)對任意,.

R上的函數(shù), ,

= =.

那么= .

可證函數(shù),且使得都成立,此時.

綜上所述, 的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為常數(shù)).

() 函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;

(Ⅱ) 若 ,且,都有成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,

時, 的零點為______;(將結果直接填寫在橫線上)

時,如果存在,使得,試求的取值范圍;

Ⅲ)如果對于任意,都有成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面的菱形, ,點EBC邊的中點,AC和DE交于點O,PO

(1)求證: ;

(2) 求二面角P-AD-C的大小。

(3)在(2)的條件下,求異面直線PBDE所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為,且點在該橢圓上。

(I)求橢圓C的方程;

(II)過橢圓C的左焦點的直線l與橢圓C相交于兩點,若的面積為,求圓心在原點O且與直線l相切的圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“雙11”前夕,某市場機構隨機對中國公民進行問卷調查,用于調研“雙11”民眾購物意愿和購物預計支出狀況. 分類統(tǒng)計后,從有購物意愿的人中隨機抽取100人作為樣本,將他(她)們按照購物預計支出(單位:千元)分成8組: [0, 2),[2, 4),[4, 6),…,[14, 16],并繪制成如圖所示的頻率分布直方圖,其中,樣本中購物預計支出不低于1萬元的人數(shù)為a.

(Ⅰ) (i)求a的值,并估算這100人購物預計支出的平均值;

(ii)以樣本估計總體,在有購物意愿的人群中,若至少有65%的人購物預計支出不低于x千元,求x的最大值.

(Ⅱ) 如果參與本次問卷調查的總人數(shù)為t,問卷調查得到下列信息:

①參與問卷調查的男女人數(shù)之比為2:3;

②男士無購物意愿和有購物意愿的人數(shù)之比是1:3,女士無購物意愿和有購物意愿的人數(shù)之比為1:4;

③能以90%的把握認為“雙11購物意愿與性別有關”,但不能以95%的把握認為“雙11購物意愿與性別有關”.

根據(jù)以上數(shù)據(jù)信息,求t所有可能取值組成的集合M.

附: ,其中.

獨立檢驗臨界值表:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-1.(n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)若數(shù)列{bn}滿足bn=an,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項和.

(1)若;

(2)若調換的順序后能構成一個等差數(shù)列,求的所有可能值;

(3)是否存在正常數(shù),使得對任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案