【題目】天氣預報說,今后三天每天下雨的概率相同,現(xiàn)用隨機模擬的方法預測三天中有兩天下雨的概率,用骰子點數(shù)來產生隨機數(shù).依據(jù)每天下雨的概率,可規(guī)定投一次骰子出現(xiàn)1點和2點代表下雨;投三次骰子代表三天;產生的三個隨機數(shù)作為一組.得到的10組隨機數(shù)如下:613,265,114,236,561,435,443,251,154,353.則在此次隨機模擬試驗中,每天下雨的概率的近似值是__________,三天中有兩天下雨的概率的近似值為__________

【答案】

【解析】

先找出10組數(shù)據(jù)中有幾組表示3天中有2 天下雨,再利用古典概型的概率公式即可求出結果.

解:每個骰子有6個點數(shù),出現(xiàn)12為下雨天,則每天下雨的概率為,

10組數(shù)據(jù)中,114,251,表示3天中有2 天下雨,

從得到的10組隨機數(shù)來看,3天中有2 天下雨的有2組,則3天中有2天下雨的概率近似值為:,

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,平面,.

1)證明:平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個三位數(shù):個位、十位、百位上的數(shù)字依次為,,當且僅當,時,稱這樣的數(shù)為凸數(shù)(如243),現(xiàn)從集合中取出三個不同的數(shù)組成一個三位數(shù),則這個三位數(shù)是凸數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知射線lθ與曲線Ct為參數(shù))相交于A,B兩點.

1)寫出射線l的參數(shù)方程和曲線C的直角坐標方程;

2)求線段AB中點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為比賽成績是否優(yōu)秀與性別有關?

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2,AEC60°,CDEDcosEDC.將△CDE沿CE折起,使點D移動到P的位置,且AP,得到四棱錐PABCE.

(1)求證:AP⊥平面ABCE;

(2)記平面PAB與平面PCE相交于直線l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.

(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)設為事件“上學期間的三天中,甲同學在7:30之前到校的天數(shù)比乙同學在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】揚州大學數(shù)學系有6名大學生要去甲、乙兩所中學實習,每名大學生都被隨機分配到兩所中學的其中一所.

(1)求6名大學生中至少有1名被分配到甲學校實習的概率;

(2)設,分別表示分配到甲、乙兩所中學的大學生人數(shù),記,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓軸交于,兩點,為橢圓的左焦點,且是邊長為2的等邊三角形.

1)求橢圓的方程;

2)設過點的直線與橢圓交于不同的兩點,點關于軸的對稱點為都不重合),判斷直線軸是否交于一個定點?若是,請寫出定點坐標,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案