已知函數(shù)f (x)=3ax-2a+1在區(qū)間(-1,1)內(nèi)存在x0使f (x0)=0,則實數(shù)a的取值范圍是
 
分析:先令f(x)=0求出x的表達式,然后根據(jù)題意得到-1<
2a-1
3a
<1,解此不等式可求得a的范圍,確定最后答案.
解答:解:令f (x)=3ax-2a+1=0得到 x=
2a-1
3a

所以根據(jù)題意有即-1<
2a-1
3a
<1,
當a>0時,解上述不等式得a>
1
5

當a<0時,解上述不等式得a<-1
所以a的取值范圍為(-∞,-1)U(
1
5
,+∞)
故答案為:(-∞,-1)U(
1
5
,+∞).
點評:本題主要考查函數(shù)的零點與方程的根的關(guān)系和分式不等式的解法,考查基礎(chǔ)知識的簡單綜合和靈活能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案