已知在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),且

(1)求函數(shù)的解析式.

(2)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.

 

【答案】

(1);(2)

【解析】

試題分析:(1)

由已知得:的兩根

 即 解得

又由得:

(2)由得:即:

在區(qū)間上恒成立,

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在區(qū)間上是增函數(shù),則的范圍是(     )

A.          B.           C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省中山市一中高三上學(xué)期第二次統(tǒng)測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知在區(qū)間上是增函數(shù).

(1)求實(shí)數(shù)的值組成的集合

(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為、.試問(wèn):是否存在實(shí)數(shù),使得不等式對(duì)任意 恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省寧波萬(wàn)里國(guó)際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知在區(qū)間上是增函數(shù),則的取值范圍為(      ) 

A、   。、

C、    D、不存在

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省09-10學(xué)年高二第二學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

已知在區(qū)間上是增函數(shù).

(1)求實(shí)數(shù)的值組成的集合;

(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為,試問(wèn):是否存在實(shí)數(shù),使得不等式對(duì)任意恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年重慶一中高一上學(xué)期10月月考數(shù)學(xué)卷 題型:選擇題

已知在區(qū)間上是增函數(shù),則實(shí)數(shù)的范圍是(     )

A.          B.           C.        D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案