【題目】.某校從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級共有學(xué)生640人,試估計(jì)該校高二年級期中考試數(shù)學(xué)成績不低于60分的學(xué)生人數(shù);
(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
【答案】(1) a=0.03;(2)544;(2) P(M)=.
【解析】試題分析: (1)由頻率分布直方圖的性質(zhì)能求出的值.
(2)先求出數(shù)學(xué)成績不低于60分的概率,由此能求出數(shù)學(xué)成績不低于60分的人數(shù).
(3)數(shù)學(xué)成績在的學(xué)生為2人,數(shù)學(xué)成績在的學(xué)生人數(shù)為4人,由此利用列舉法能求出這2名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的槪率.
試題解析:
(1)由于圖中所有小矩形的面積之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1.
解得a=0.03.
(2)根據(jù)頻率分布直方圖,成績不低于60分的頻率為110×(0.005+0.01)=0.85由于該校高一年級共有學(xué)生640人,利用樣本估計(jì)總體的思想,可估計(jì)該校高一年級數(shù)學(xué)成績不低于60分的人數(shù)約為640×0.85=544人 .
(3)成績在[40,50)分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B,成績在[90,100]分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F.
若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15種.
如果兩名學(xué)生的數(shù)學(xué)成績都在[40,50)分?jǐn)?shù)段內(nèi)或都在[90,100]分?jǐn)?shù)段內(nèi),那么這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值一定不大于10.如果一個成績在[40,50)分?jǐn)?shù)段內(nèi),另一個成績在[90,100]分?jǐn)?shù)段內(nèi),那么這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值一定大于10.
記“這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10”為事件M,則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7種.所以所求概率為P(M)=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
合計(jì) | |||
認(rèn)可 | |||
不認(rèn)可 | |||
合計(jì) |
(Ⅰ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
(Ⅱ)若從此樣本中的 城市和 城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自 城市的概率是多少?
附:參考數(shù)據(jù):(參考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=3x﹣1,則f(9)=( )
A.﹣2
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育機(jī)構(gòu)隨機(jī)抽查某校20個班級,調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以5為組距將數(shù)據(jù)分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道:“心有靈犀”一般是對人的心理活動非常融洽的一種描述,它也可以用數(shù)學(xué)來定義:甲、乙兩人都在{1,2,3,4,5,6}中說一個數(shù),甲說的數(shù)記為a,乙說的數(shù)記為b,若|a﹣b|≤1,則稱甲、乙兩人“心有靈犀”,由此可以得到甲、乙兩人“心有靈犀”的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批產(chǎn)品中,有一級品100個,二級品60個,三級品40個,分別用系統(tǒng)抽樣和分層抽樣的方法,從這批產(chǎn)品中抽取一個容量為20的樣本,寫出抽樣過程,并說明采用哪種抽樣方法更能反映總體水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生大規(guī)模群體感染的標(biāo)準(zhǔn)為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例的數(shù)據(jù),一定符合該標(biāo)準(zhǔn)的是____.(填序號)
①甲地:總體均值為3,中位數(shù)為4
②乙地:總體均值為1,總體方差大于0
③丙地:中位數(shù)為2,眾數(shù)為3
④丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=2x(1﹣x),則f(﹣ )+f(1)=( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣4x+4,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[0,3]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com