已知平面向量
a
=(1,2),
b
=(-2,m),且
a
b
,則2
a
+3
b
=( 。
A、(8,16)
B、(-4,-8)
C、(-4,7)
D、(8,1)
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:由向量垂直的坐標(biāo)表示列式求得m的值,然后再由向量的數(shù)乘及坐標(biāo)加法運(yùn)算求解2
a
+3
b
的值.
解答: 解:∵
a
=(1,2),
b
=(-2,m),且
a
b

∴1×(-2)+2m=0,解得:m=1.
b
=(-2,1),
則2
a
+3
b
=2(1,2)+3(-2,1)=(2,4)+(-6,3)=(-4,7).
故選:C.
點(diǎn)評:本題考查了平面向量的坐標(biāo)運(yùn)算,考查了向量垂直的條件,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈R,x2+2x+m≥0”的否定為真命題,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)由三個(gè)正方體組成幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、9+2
2
B、11
C、9.125
D、10+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}共有5項(xiàng),其中a1=0,a5=2,且|ai+1-ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個(gè)數(shù)為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知全集U=R,集合M={x|-2≤x-1≤2}和N={1,3,5,7,9}的關(guān)系的韋恩(Venn)圖如圖所示,則陰影部分所示的集合的元素共有(  )
A、3個(gè)B、2個(gè)C、1個(gè)D、無窮個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
③在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ位于區(qū)域(0,1)內(nèi)的概率為0.4,則ξ位于區(qū)域(0,2)內(nèi)的概率為0.8;
④對分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握越大.
其中真命題的序號為( 。
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x2-1<0},B={x|x+2≥0},則A∩B=( 。
A、A
B、B
C、{x|-2≤x<1}
D、{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),若對?x∈(0,+∞),都有f[f(x)-2x]=3,則方程f′(x)-
4
x
=0的解所在的區(qū)間是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a<0時(shí),函數(shù)m(t)=
1
2
at2+t-a
的定義域?yàn)?span id="lurtc3u" class="MathJye">[
2
,2],記函數(shù)m(t)的最大值為g(a).
(1)求g(a)的解析式;
(2)試求滿足g(a)>g(
1
a
)
的所有實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案