實(shí)數(shù)x,y均為非負(fù),且x2y = 2,那么x·y + x2的最小值是______;此時(shí),x = _______;y = __________

 

答案:3;1;2
提示:

1  x2y = 2  代入

2  充分利用常數(shù)x2·y =2

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈R,y∈R有唯一確定的f (x,y)與之對應(yīng),則稱f (x,y)為關(guān)于x,y的二元函數(shù).
定義:同時(shí)滿足下列性質(zhì)的二元函數(shù)f (x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
(Ⅰ)非負(fù)性:f (x,y)≥0;
(Ⅱ)對稱性:f (x,y)=f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)對任意的實(shí)數(shù)z均成立.
給出下列二元函數(shù):
①f (x,y)=(x-y)2
②f (x,y)=|x-y|;
③f (x,y)=
x-y
;
④f (x,y)=|sin(x-y)|.
則其中能夠成為關(guān)于x,y的廣義“距離”的函數(shù)編號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

實(shí)數(shù)x,y均為非負(fù),且x2y = 2,那么x·y + x2的最小值是______;此時(shí),x = _______;y = __________

 

查看答案和解析>>

同步練習(xí)冊答案