A是△BCD平面外的一點,E,F(xiàn)分別是BC,AD的中點.
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

(1)見解析   (2)45°

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三角形△ABC與△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,點P,Q分別在線段BD,CD上,沿直線PQ將△PQD向上翻折,使D與A重合.

(Ⅰ)求證:AB⊥CQ;
(Ⅱ)求BP的長;
(Ⅲ)求直線AP與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。

(1)求證:OB⊥AC;
(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中-A BC中,AB  AC,AB=AC=2,=4,點D是BC的中點.
(1)求異面直線所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分14分)如圖在三棱錐中,分別為棱的中點,已知,

求證(1)直線平面;
(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,點M,N分別為A′B和B′C′的中點.

(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′-MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,
(1)若點在對角線上移動,求證:
(2)當為棱中點時,求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點.

(1)求證:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,側棱垂直于底面,,、分別為、的中點.
(1)求證:平面平面
(2)求證:平面;
(3)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案