【題目】如圖,將正六邊形ABCDEF中的一半圖形ABCD繞AD翻折到AB1C1D,使得∠B1AF=60°.G是BF與AD的交點.
(Ⅰ)求證:平面ADEF⊥平面B1FG;
(Ⅱ)求直線AB1與平面ADEF所成角的正弦值.

【答案】證明:(Ⅰ)由正六邊形對稱性可知BF⊥AD, 因此B1G⊥AD,F(xiàn)G⊥AD.
又B1G∩FG=G,B1G平面B1GF,F(xiàn)G平面B1GF,
所以AD⊥平面B1GF.
又因為AD平面ADEF,
所以平面ADEF⊥平面B1FG.
(Ⅱ)(方法一)

由(Ⅰ)已得平面B1GF⊥平面ADEF.
作B1H⊥FG于H,
又由于平面B1GF∩平面ADEF=FG,
所以B1H⊥平面ADEF.
連接AH,則∠B1AH就是直線B1A與平面ADEF所成的角.
不妨設正六邊形邊長為2.
則AF=AB1=2且∠B1AF=60°,∠B1AG=∠FAG=60°
得B1F=2,
在△B1GF中, =
,

所以直線AB1與平面ADEF所成角的正弦值為
(方法二)如圖,以A為坐標原點,以AD為x軸,
過A在平面ADEF內(nèi)作垂直于AD的直線為y軸,
過A作垂直于平面ADEF的直線為z軸建立空間直角坐標系.

不妨設正六邊形邊長為2.則 ,


得x①.
②.
③.
由①②③得 .所以
取平面ADEF的法向量
所以直線AB1與平面ADEF所成角的正弦值為
【解析】(Ⅰ)推導出B1G⊥AD,F(xiàn)G⊥AD,從而AD⊥平面B1GF,由此能證明平面ADEF⊥平面B1FG.(Ⅱ)法一:作B1H⊥FG于H,連接AH,則∠B1AH就是直線B1A與平面ADEF所成的角,由此能求出直線AB1與平面ADEF所成角的正弦值.法二:以A為坐原點,以AD為x軸,過A在平面ADEF內(nèi)作垂直于AD的直線為y軸,過A作垂直于平面ADEF的直線為z軸建立空間直角坐標系,利用向量法能求出直線AB1與平面ADEF所成角的正弦值為
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角和平面與平面垂直的判定的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一個整數(shù),則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),對于下列說法:
(1)M中所有直線均經(jīng)過一個定點;
(2)存在一個圓與所有直線不相交;
(3)對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能圍成的正三角形面積都相等.
其中說法正確的是(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=4x的焦點為F,點A、B在拋物線上,且∠AFB=90°,弦AB中點M在準線l上的射影為M1 , 則 的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,h(x)=2f(x)﹣ax﹣b.
(Ⅰ)判斷f(x)的奇偶性,并說明理由;
(Ⅱ)若f(x)為奇函數(shù),且h(x)在[﹣1,1]有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0且C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有b1an+b2an1+b3an2+…+bna1=( n 成立,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了測量山頂M的海拔高度,飛機沿水平方向在A,B兩點進行測量,A,B,M在同一個鉛垂面內(nèi)(如圖).能夠測量的數(shù)據(jù)有俯角、飛機的高度和A,B兩點間的距離.請你設計一個方案,包括:
(1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標出);
(2)用文字和公式寫出計算山頂M海拔高度的步驟.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉行環(huán)保知識競賽,為了了解本次競賽成績情況,從得分不低于50分的試卷中隨機抽取100名學生的成績(得分均為正數(shù),滿分100分),進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(Ⅰ)求a、b的值;
(Ⅱ)若從成績較好的第3、4、5組中,按分層抽樣的方法抽取6人參加社區(qū)志愿者活動,并從中選出2人做負責人,求2人中至少有1人是第四組的概率.

組號

分組

頻數(shù)

頻率

第1組

[50,60]

5

0.05

第2組

[60,70]

a

0.35

第3組

[70,80]

30

b

第4組

[80,90]

20

0.20

第5組

[90,100]

10

0.10

合計

100

1.00

查看答案和解析>>

同步練習冊答案