【題目】已知函數(shù)在上沒有最小值,則的取值范圍是________________.
【答案】
【解析】
先求導,利用f′(x)=0時,x=0或x=,討論兩個極值點與(-1,1)的關(guān)系,再根據(jù)導數(shù)和函數(shù)的單調(diào)性最值的關(guān)系將極值與端點處函數(shù)值作比較得到a的范圍.
∵f(x)=x3﹣ax,∴f′(x)=3x2﹣2ax=x(3x-2a),當f′(x)=0時,x=0或x=,
(1)當∈(﹣∞,﹣1]時,即a時,f(x)在(-1,0)單調(diào)遞減,在(0,1)單調(diào)遞增,此時x=0時f(x)取得最小值,所以舍去.
(2)當-1<<0時,f(x)在(-1,)單調(diào)遞增,在(,0)單調(diào)遞增減,在(0,1)單調(diào)遞增,由題意在上沒有最小值,
則有
(3)當a=0時,f(x)=在上顯然沒有最小值,故成立.
(4)當0<<1時,f(x)在(-1,)單調(diào)遞增,在(0,)單調(diào)遞增減,在(,1)單調(diào)遞增,由題意在上沒有最小值,
則有
(5)當時,即a時,f(x)在(-1,0)單調(diào)遞增,在(0,1)單調(diào)遞減,
此時f(x)在上沒有最小值.
綜上:a>-1.
故答案為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面,,,,為線段上一點,,為的中點.
(1)證明:平面;
(2)求點到平面的距離;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,⊥底面,⊥,∥,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察下表:
1,2,3,
4,5,6,7,8,
9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,
……
問:(1)此表第行的第一個數(shù)與最后一個數(shù)分別是多少?
(2)此表第行的各個數(shù)之和是多少?
(3)2019是第幾行的第幾個數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,函數(shù).
(1)若,且,求的值;
(2)當時,不等式恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個不同的實數(shù)根,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓.
(1)若直線過點且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點向圓引一條切線,切點為為坐標原點,滿足,求點的軌跡方程及的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過雙曲線的左焦點作圓的切線,切點為,延長交雙曲線右支于點.若線段的中點為,為坐標原點,則與的大小關(guān)系是( )
A. B.
C. D. 無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】暑假期間,某旅行社為吸引中學生去某基地參加夏令營,推出如下收費標準:若夏令營人數(shù)不超過30,則每位同學需交費用600元;若夏令營人數(shù)超過30,則營員每多1人,每人交費額減少10元(即:營員31人時,每人交費590元,營員32人時,每人交費580元,以此類推),直到達到滿額70人為止.
(1)寫出夏令營每位同學需交費用(單位:元)與夏令營人數(shù)之間的函數(shù)關(guān)系式;
(2)當夏令營人數(shù)為多少時,旅行社可以獲得最大收入?最大收入是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com