【題目】已知函數(shù).

(I)求的值;

(II)求;

(III)若,求.

【答案】(I),-11 ; (II)f8x1)=;(III)

【解析】

(I)根據(jù)函數(shù)的解析式依次求值即可;(II)根據(jù)解析式對(duì)8x1分三種情況依次求出,最后再用分段函數(shù)的形式表示出f8x1);(III)根據(jù)解析式對(duì)4a分三種情況,分別由條件列出方程求出a的值.

(I)由題意得,f1+)=f2+)=1+

=1+ ,

f(﹣4)=﹣8+3-5,則f-5)=-10+3-7,f-7)=-14+3-11

所以;

(II)當(dāng)8x11x時(shí),f8x1)=1+

當(dāng)﹣18x110x時(shí),f8x1)=(8x12+164x216x+2

當(dāng)8x1<﹣1x0時(shí),f8x1)=28x1+316x+1,

綜上可得,f8x1)= ;

(III)因?yàn)?/span>,所以分以下三種情況:

當(dāng)4a1時(shí),即a時(shí),f4a)=,解得a,成立,

當(dāng)﹣14a1時(shí),即-a時(shí),f4a)=16a2+1,解得a,成立

當(dāng)4a<﹣1時(shí),即a<-時(shí),f4a)=8a+3,解得a=-,不成立,

綜上可得,a的值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù), .

1)求的單調(diào)區(qū)間與極值;

2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若直線(xiàn)g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線(xiàn),求a+b的最小值;
(3)當(dāng)b=0時(shí),若f(x)與g(x)的圖象有兩個(gè)交點(diǎn)A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取 為1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在R上的奇函數(shù),且x≥0時(shí)有

(1)寫(xiě)出函數(shù)的單調(diào)區(qū)間(不要證明);

(2)解不等式;

(3)求函數(shù)在[﹣m,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱(chēng)f(x)為“三角保型函數(shù)”,給出下列函數(shù): ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數(shù)”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于曲線(xiàn)(其中為自然對(duì)數(shù)的底數(shù))上任意一點(diǎn)處的切線(xiàn),總存在在曲線(xiàn)上一點(diǎn)處的切線(xiàn),使得,則實(shí)數(shù)的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},則A,B,C的關(guān)系是(
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=3﹣ an , bn是an與an+1的等差中項(xiàng),則數(shù)列{bn}的通項(xiàng)公式為(
A.4×3n
B.4×( n
C. ×( n1
D. ×( n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案