【題目】已知符號函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),則(
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]

【答案】B
【解析】解:由于本題是選擇題,可以采用特殊法,符號函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),
不妨令f(x)=x,a=2,
則g(x)=f(x)﹣f(ax)=﹣x,
sgn[g(x)]=﹣sgnx.所以A不正確,B正確,
sgn[f(x)]=sgnx,C不正確;D正確;
對于D,令f(x)=x+1,a=2,
則g(x)=f(x)﹣f(ax)=﹣x,
sgn[f(x)]=sgn(x+1)= ;
sgn[g(x)]=sgn(﹣x)= ,
﹣sgn[f(x)]=﹣sgn(x+1)= ;所以D不正確;
故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(a﹣bx3)ex ,且函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當x∈(0,1)時,f(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若D′是平面α外一點,則下列命題正確的是(
A.過D′只能作一條直線與平面α相交
B.過D′可作無數(shù)條直線與平面α垂直
C.過D′只能作一條直線與平面α平行
D.過D′可作無數(shù)條直線與平面α平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段,的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了了解學生每天平均課外閱讀的時間(單位:分鐘),從本校隨機抽取了100名學生進行調(diào)查,根據(jù)收集的數(shù)據(jù),得到學生每天課外閱讀時間的頻率分布直方圖,如圖所示,若每天課外閱讀時間不超過30分鐘的有45人.

(Ⅰ)求的值;

(Ⅱ)根據(jù)頻率分布直方圖,估計該校學生每天課外閱讀時間的中位數(shù)及平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).

查看答案和解析>>

同步練習冊答案