【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點(diǎn),E,F(xiàn)分別為PD,PC的中點(diǎn).
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)M,使得CM∥平面AEF?若存在,求 的值;若不存在,說(shuō)明理由.

【答案】(Ⅰ)證明:∵AP⊥BP,D是AB中點(diǎn),
∴PD=AD,
又∠PAB=60°,∴△PAD是等邊三角形,
又E為PD的中點(diǎn),∴AE⊥PD,
∵AC⊥BC,∠ABC=45°,
又D是AB的中點(diǎn),∴CD⊥AB,
∵平面PAB⊥平面ABC,又平面PAB∩平面ABC=AB,
∴CD⊥平面PAB,∵AE平面PAB,∴CD⊥AE,
又CD∩PD=D,∴AE⊥平面PCD.
(Ⅱ)解:以A為原點(diǎn),作Ax∥DC,以AB所在直線為y軸,建立空間直角坐標(biāo)系,
設(shè)AB=2a,則A(0,0,0),B(0,2a,0),C(a,a,0),D(0,a,0),P(0, ),
∵CD⊥平面PAB,∴平面PAB的一個(gè)法向量為 =(﹣a,0,0),
設(shè)平面PAC的一個(gè)法向量為 =(x,y,z),
,令x=1,得 =(1,﹣1, ),
設(shè)二面角B﹣PA﹣C的平面角為θ,
由圖知,二面角B﹣PA﹣C為銳角,
∴cosθ= = =
∴二面角B﹣PA﹣C的余弦值為
(Ⅲ)PB上存在M,使得CM∥平面AEF,此時(shí) =
證明:在平面ABP中,延長(zhǎng)AE交BP為G,
取BG中點(diǎn)M,∵M(jìn)為BG中點(diǎn),D為AB中點(diǎn),
∴DM∥AG,又E為PD中點(diǎn),∴G為PM中點(diǎn),
此時(shí), = ,∴DM∥AE,
∵DM面AEF,AE面AEF,
∴DM∥平面AEF,
∵E,F(xiàn)分別是PD,PC的中點(diǎn),
∴CD∥EF,CD面AEF,EF平面AEF,
∴CD∥平面AEF,CD∩DM=D,CD面CDM,DM面CDM,
∴面CDM∥面AEF,
∵CM面CDM,∴CM∥面AEF.

【解析】(Ⅰ)推導(dǎo)出PD=AD,從而△PAD是等邊三角形,進(jìn)而AE⊥PD,再求出CD⊥AB,從而CD⊥平面PAB,進(jìn)而CD⊥AE,由此能證明AE⊥平面PCD.(Ⅱ)以A為原點(diǎn),作Ax∥DC,以AB所在直線為y軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣PA﹣C的余弦值.(Ⅲ)在平面ABP中,延長(zhǎng)AE交BP為G,取BG中點(diǎn)M,推導(dǎo)出G為PM中點(diǎn),此時(shí), = 從而DM∥平面AEF,推導(dǎo)出面CDM∥面AEF,從而得到CM∥面AEF.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意正整數(shù)n,設(shè)an是方程x2+ =1的正根.求證:
(1)an+1>an;
(2) + +…+ <1+ + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為(
A.
B.
C.(6,+∞)
D.[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲拋擲均勻硬幣2017次,乙拋擲均勻硬幣2016次,下列四個(gè)隨機(jī)事件的概率是0.5的是( )
①甲拋出正面次數(shù)比乙拋出正面次數(shù)多;
②甲拋出反面次數(shù)比乙拋出正面次數(shù)少;
③甲拋出反面次數(shù)比甲拋出正面次數(shù)多;
④乙拋出正面次數(shù)與乙拋出反面次數(shù)一樣多.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)共享單車在我國(guó)主要城市發(fā)展迅速.目前市場(chǎng)上有多種類型的共享單車,有關(guān)部門對(duì)其中三種共享單車方式(M方式、Y方式、F方式)進(jìn)行統(tǒng)計(jì)(統(tǒng)計(jì)對(duì)象年齡在15~55歲),相關(guān)數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)

方式
年齡分組

M
方式

Y
方式

F
方式

[15,25)

25%

20%

35%

[25,35)

50%

55%

25%

[35,45)

20%

20%

20%

[45,55]

5%

a%

20%

不同性別選擇共享單車種類情況統(tǒng)計(jì)(表2)

性別
使用單車
種類數(shù)(種)

1

20%

50%

2

35%

40%

3

45%

10%

(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計(jì)對(duì)象中隨機(jī)選取男女各一人,試估計(jì)男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個(gè)年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問(wèn)此結(jié)論是否正確?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個(gè)零點(diǎn)x1 , x2 , 則x1+x2的取值范圍是(
A.[4﹣2ln2,+∞)
B.[1+ ,+∞)
C.[4﹣2ln2,1+
D.[﹣∞,1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b 是函數(shù) 的兩個(gè)不同的零點(diǎn),且a,b,-2 這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案