【題目】已知橢圓的右焦點(diǎn)是拋物線的焦點(diǎn),直線相交于不同的兩點(diǎn)

1)求的方程;

2)若直線經(jīng)過(guò)點(diǎn),求的面積的最小值(為坐標(biāo)原點(diǎn))

3)已知點(diǎn),直線經(jīng)過(guò)點(diǎn),為線段的中點(diǎn),求證:

【答案】(1);(2;(3)見(jiàn)解析

【解析】

1)由題意方程求出右焦點(diǎn)坐標(biāo),即拋物線焦點(diǎn)坐標(biāo),進(jìn)一步可得拋物線方程;

2)設(shè)出直線方程,與拋物線方程聯(lián)立,化為關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系求得|y1y2|,代入三角形面積公式,利用二次函數(shù)求最值;

3)分直線AB的斜率存在與不存在,證明有,可得CACB,又D為線段AB的中點(diǎn),則|AB|2|CD|

1)∵橢圓的右焦點(diǎn)為,∴, 的方程為

2)(解法1)顯然直線的斜率不為零,設(shè)直線的方程為,

,得,則,

∴當(dāng),即直線垂直軸時(shí),的面積取到最小值,最小值為

(解法2)若直線的斜率不存在,由,得,

的面積,

若直線的斜率存在,不妨設(shè)直線的方程為,

,得,,且,

,

的面積的最小值為

3)(解法1)∵直線的斜率不可能為零,設(shè)直線方程為,

,∴,

,即

中,為斜邊的中點(diǎn),所以

(解法2)(前同解法1)/span>

線段的中點(diǎn)的坐標(biāo)為,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為等差數(shù)列的公差,數(shù)列的前項(xiàng)和,滿(mǎn)足),且,若實(shí)數(shù),),則稱(chēng)具有性質(zhì).

1)請(qǐng)判斷、是否具有性質(zhì),并說(shuō)明理由;

2)設(shè)為數(shù)列的前項(xiàng)和,若是單調(diào)遞增數(shù)列,求證:對(duì)任意的,),實(shí)數(shù)都不具有性質(zhì)

3)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的,都具有性質(zhì),求所有滿(mǎn)足條件的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),實(shí)數(shù)滿(mǎn)足;

1)當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),求的值域;

2)求函數(shù)關(guān)系式,并求函數(shù)的定義域

3)在(2)的結(jié)論中,對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),為線段上的動(dòng)點(diǎn).

1)平面與平面是否互相垂直?如果垂直,請(qǐng)證明;如果不垂直,請(qǐng)說(shuō)明理由.

2)若為線段的三等分點(diǎn),求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),如果存在實(shí)數(shù),且不同時(shí)成立),使得對(duì)恒成立,則稱(chēng)函數(shù)映像函數(shù)”.

1)判斷函數(shù)是否是映像函數(shù),如果是,請(qǐng)求出相應(yīng)的的值,若不是,請(qǐng)說(shuō)明理由;

2)已知函數(shù)是定義在上的映像函數(shù),且當(dāng)時(shí),.求函數(shù))的反函數(shù);

3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線的左、右焦點(diǎn),過(guò)斜率為的直線交雙曲線的左、右兩支分別于兩點(diǎn),過(guò)且與垂直的直線交雙曲線的左、右兩支分別于兩點(diǎn).

1)求的取值范圍;

(2)求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了我運(yùn)動(dòng),我健康,我快樂(lè)的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):

1)求高一、高二兩個(gè)年級(jí)各有多少人?

2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱(chēng)該學(xué)生為運(yùn)動(dòng)達(dá)人”.

①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為運(yùn)動(dòng)達(dá)人的概率;

②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為運(yùn)動(dòng)達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿(mǎn)足,對(duì)于任意都有,且,另

1)求函數(shù)的表達(dá)式;

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),判斷函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù),并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案