點A(1,2,-3)關(guān)于x軸的對稱點B的坐標(biāo)為        , 點A關(guān)于坐標(biāo)平面xOy的對稱點C的坐標(biāo)為        , B,C兩點間的距離為          
(1,-2,3 )   (1,2,3)    4 
過A作AM⊥xOy交平面于M,并延長到C,使CM=AM,則A與C'關(guān)于坐標(biāo)平面xOy對稱且C(1,2,3).
過A作AN⊥x軸于N,并延長到點B,使NB=AN,則A與B關(guān)于x軸對稱且B(1,-2,3).
∴A(1,2,-3)關(guān)于x軸對稱的點B(1,-2,3 ).
又A(1,2,-3)關(guān)于坐標(biāo)平面xOy對稱的點C(1,2,3);
∴|BC|==4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線焦點恰好是雙曲線的右焦點,且兩條曲線交點的連線過點,則該雙曲線的離心率為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為( �。�                                                                                                                           
A. 4B.C.D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求圓上的點到直線的距離的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分) 已知橢圓的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過、、 三點. (1)求橢圓的方程:(2)若點D為橢圓上不同于、的任意一點,,當(dāng)內(nèi)切圓的面積最大時。求內(nèi)切圓圓心的坐標(biāo);(3)若直線與橢圓交于兩點,證明直線與直線的交點在定直線上并求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線的傾斜角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的焦點F(c,  0)的弦中最短弦長是         (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線的傾斜角為鈍角,則實數(shù)的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線的斜率,則此直線的傾斜角的取值范圍為          ;

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹