已知橢圓的左右焦點(diǎn)分別為F1(-1,0)、F2(1,0),且經(jīng)過點(diǎn),M為橢圓上的動點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的方程;
(2)若圓M與y軸有兩個交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍.
【答案】分析:(1)由題設(shè)知及橢圓定義得|PF1|+|PF2|=2a,求出a=2.又c=1.由此能求出橢圓方程.
(2)先設(shè)M(x,y),得到圓M的半徑,再利用圓心M到y(tǒng)軸距離d=|x|,結(jié)合圓M與y軸有兩個交點(diǎn)時,則有r>d,即可構(gòu)造關(guān)于x不等式,從而解得點(diǎn)M橫坐標(biāo)的取值范圍.
解答:解:(1)由橢圓定義得|PF1|+|PF2|=2a,…(1分)
,…(3分)
∴a=2.又c=1,∴b2=a2-c2=3.…(5分)
故橢圓方程為.…(6分)
(2)設(shè)M(x,y),則圓M的半徑,…(7分)
圓心M到y(tǒng)軸距離d=|x|,…(8分)
若圓M與y軸有兩個交點(diǎn)則有r>d即,…(9分)
化簡得.…(10分)
∵M(jìn)為橢圓上的點(diǎn)
,…(11分)
代入以上不等式得,
解得.…(12分)
∵-2≤x≤2,…(13分)
.…(14分)
點(diǎn)評:本題考查橢圓方程和直線與圓錐曲線的關(guān)系,綜合性強(qiáng),是高考的重點(diǎn).解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn),.當(dāng)時,M恰為橢圓的上頂點(diǎn),此時△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線與直線分別相交于點(diǎn),,問當(dāng)

變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點(diǎn)分別是F1,F(xiàn)2,過右焦點(diǎn)F2且斜率為k的直線與橢圓交于A,B兩點(diǎn).
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時,M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時,M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時,M是橢圓的上頂點(diǎn),且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案