【題目】如圖給出的是計算 的值的一個程序框圖,判斷其中框內應填入的條件是( )
A.i>10
B.i<10
C.i>20
D.i<20
【答案】C
【解析】解:框圖首先給變量s,n,i賦值s=0,n=2,i=1.
判斷,條件不滿足,執(zhí)行s=0+ ,n=2+2=4,i=1+1=2;
判斷,條件不滿足,執(zhí)行s= + ,n=4+2=6,i=2+1=3;
判斷,條件不滿足,執(zhí)行s= + + ,n=6+2=8,i=3+1=4;
…
由此看出,當執(zhí)行s= 時,執(zhí)行n=20+2=22,i=10+1=11.
此時判斷框中的條件應滿足,所以判斷框中的條件應是i>10.
故選C.
【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】城市公交車的數量太多容易造成資源的浪費,太少又難以滿足乘客的需求,為此,某市公交公司在某站臺的60名候車的乘客中隨機抽取15人,將他們的候車時間作為樣本分成5組,如下表所示:
組別 | 一 | 二 | 三 | 四 | 五 |
候車時間(分鐘) | |||||
人數 | 2 | 6 | 4 | 2 | 1 |
(1)估計這15名乘客的平均候車時間;
(2)估計這60 名乘客中候車時間少于10 分鐘的人數;
(3)若從上表第三、四組的6人中選2人作進一步的問卷調查,求抽到的2人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們稱滿足: ()的數列為“級夢數列”.
(1)若是“級夢數列”且.求: 和的值;
(2)若是“級夢數列”且滿足, ,求的最小值;
(3)若是“0級夢數列”且,設數列的前項和為.證明: ().
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線: (為參數),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)過點且與直線平行的直線交于, 兩點,求點到, 兩點的距離之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC A1B1C1中,側棱垂直于底面,AB⊥BC, ,
E,F分別是A1C1,BC的中點.
(Ⅰ)求證:C1F∥平面ABE;
(Ⅱ)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是一個非空集合, 是定義在上的一個運算.如果同時滿足下述四個條件:
(1)對于,都有;
(2)對于,都有;
(3)對于,使得;
(4)對于,使得(注:“”同(iii)中的“”).
則稱關于運算構成一個群.現給出下列集合和運算:
①是整數集合, 為加法;②是奇數集合, 為乘法;③是平面向量集合, 為數量積運算;④是非零復數集合, 為乘法. 其中關于運算構成群的序號是___________(將你認為正確的序號都寫上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某高中學生每天的睡眠時間,現隨機對20名男生和20名女生進行問卷調查,結果如下:
女生:
睡眠時間(小時) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人數 | 2 | 4 | 8 | 4 | 2 |
男生:
睡眠時間(小時) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人數 | 1 | 5 | 6 | 5 | 3 |
(1)現把睡眠時間不足5小時的定義為“嚴重睡眠不足”,從睡眠時間不足6小時的女生中隨機抽取2人,求此2人中恰有一人為“嚴重睡眠不足”的概率;
(2)完成下面2×2列聯(lián)表,并回答是否有90%的把握認為“睡眠時間與性別有關”?
睡眠時間少于7小時 | 睡眠時間不少于7小時 | 合計 | |
男生 | |||
女生 | |||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,向量m=(2b,1),n=(2a-c,cos C),且m∥n.(1)若b2=ac,試判斷△ABC的形狀;(2)求y=1-的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確命題的個數是( )
①若2b=a+c,則a,b,c成等差數列;
②“a,b,c成等比數列”的充要條件是“b2=ac”;
③若數列{an2}是等比數列,則數列{an}也是等比數列;
④若| |=| |,則 = .
A.3
B.2
C.1
D.0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com