設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=(b+c)cosC,則△ABC的形狀是( 。
分析:要判斷△ABC的形狀,根據(jù)題意,可利用正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R將a=(b+c)cosC中的邊轉(zhuǎn)化為相應(yīng)角的正弦,然后化簡(jiǎn)整理即可.
解答:解:根據(jù)正弦定理理
a
sinA
=
b
sinB
=
c
sinC
=2R得:a=2RsinA,b=2RsinB,c=2RsinC,
∵a=(b+c)cosC,
∴sinA=(sinB+sinC)cosc,又A+B+C=π,
∴sinA=sin(B+C)=sinBcosC+sinCcosB=sinBcosC+sinCcosC,
化簡(jiǎn)得 cosB=cosC 又 B,C∈(0,π),
∴B=C,即△ABC為等腰三角形.
故選A.
點(diǎn)評(píng):本題考查三角形的形狀判斷,正弦定理的靈活應(yīng)用是解決問題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長(zhǎng);
(2)若直線l:
x
a
+
y
b
=1
恒過點(diǎn)D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案