【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若方程有兩個實數(shù)根,求實數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)由題意,求得函數(shù)的導數(shù),分類討論,即可求解函數(shù)的單調(diào)區(qū)間;

(2)令,知單調(diào)遞增且有大于0的零點,不妨設為,若有有兩個零點,需滿足,即,令

得出上單調(diào)遞減,求得的解集為,當時,,即,進而利用函數(shù)的單調(diào)性求解.

(1)由題可得

時,,上單調(diào)遞增;

時,,上單調(diào)遞增;

,上單調(diào)遞減.

(2)令,,易知單調(diào)遞增且一定有大于0的零點,不妨設為,即,,

故若有有兩個零點,需滿足,

,

,,所以上單調(diào)遞減.

,所以的解集為,

,所以.

時,,

,

由于,所以,

,所以

,上有唯一零點,另一方面,在上,

時,由增長速度大,所以有,

綜上,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】物線的焦點為,已知點為拋物線上的兩個動點,且滿足,過弦的中點作該拋物線準線的垂線,垂足為,則的最小值為  

A. B. 1 C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示甲,在四邊形ABCD中,,,是邊長為8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如圖所示乙所示,點OM,N分別為棱ACPA,AD的中點.

求證:平面PON;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當a=1時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);

(Ⅱ)當x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點,記,求的最大值;

(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若不等式上恒成立,求a的取值范圍;

2)若函數(shù)恰好有三個零點,求b的值及該函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)討論的單調(diào)性;

2)若存在3個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案