【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,以極點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

(1)曲線的直角坐標(biāo)方程和點(diǎn)的直角坐標(biāo);

(2)若過(guò)點(diǎn)且傾斜角為的直線,點(diǎn)為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.

【答案】(1) ;(2) .

【解析】

(1)根據(jù)極坐標(biāo)和直角坐標(biāo)間的互化公式求解即可得到結(jié)論.(2)轉(zhuǎn)化為直角坐標(biāo)求解,設(shè)點(diǎn)的坐標(biāo),然后根據(jù)點(diǎn)到直線的距離求解,再結(jié)合二次函數(shù)得到所求最小值.

(1)由

代入上式得,

∴曲線的直角坐標(biāo)方程為

設(shè)點(diǎn)的直角坐標(biāo)為

,

∴點(diǎn)的直角坐標(biāo)為

(2)由題意得直線的方程為,即

設(shè)點(diǎn),

則點(diǎn)到直線的距離為,

故當(dāng)時(shí),有最小值,且

∴點(diǎn)到直線的最小距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對(duì)霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對(duì)于霧霾天氣的研究也漸漸活躍起來(lái),某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

若射線l與曲線,的交點(diǎn)分別為A,B異于原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,平面,,中點(diǎn).

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案