【題目】已知橢圓 的中心在原點,離心率為 ,右焦點到直線 的距離為2.
(1)求橢圓 的方程;
(2)橢圓下頂點為 ,直線 ( )與橢圓相交于不同的兩點 ,當 時,求 的取值范圍.
【答案】
(1)解: 設橢圓的右焦點為 ,依題意有
又 ,得 , 又 ,
橢圓 的方程為
(2)解: 橢圓下頂點為 ,由 消去 ,得
直線與橢圓有兩個不同的交點
,即
設 ,則
中點坐標為
, , ,即
得 把 代入 ,
得 ,解得 的取值范圍是
【解析】(1)由已知條件求出橢圓的焦點坐標,結合點到直線的距離公式得出c的值由離心率的值求出a的值,再利用橢圓里的關系得到b的值進而得出橢圓的方程。(2)由題意設出直線的方程與橢圓的方程聯(lián)立,消去y得到關于x的方程借助韋達定理求出 x1 + x2、 x1x2 關于m的代數式,利用中點坐標的公式求出點D的坐標,結合題意中的垂直關系得出k AD kMN = 1
得到k和m的關系式,代入上式得到關于m的不等式組解出m的取值范圍。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=asinx﹣bcosx(a,b為常數,a≠0,x∈R)的圖象關于x= 對稱,則函數y=f( ﹣x)是( )
A.偶函數且它的圖象關于點(π,0)對稱
B.偶函數且它的圖象關于點 對稱
C.奇函數且它的圖象關于點 對稱
D.奇函數且它的圖象關于點(π,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數 圖象的一部分.為了得到這個函數的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 ,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 ,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則 ”
⑶ 中, . 是斜邊 上的點, .以 為起點任作一條射線 交 于 點,則 點落在線段 上的概率是
⑷設隨機變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數f(x)的圖象向右平移 個單位后得到函數g(x)的圖象,若函數g(x)在區(qū)間 ( )上的值域為[﹣1,2],則θ= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com