【題目】已知函數(shù),若存在實數(shù),使得對于定義域內(nèi)的任意實數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對稱為函數(shù)的“平衡”數(shù)對.

1)若,判斷是否為“可平衡”函數(shù),并說明理由;

2)若,,當(dāng)變化時,求證:的“平衡”數(shù)對相同;

3)若,且、均為函數(shù)的“平衡”數(shù)對.當(dāng)時,求的取值范圍.

【答案】(1)是“可平衡”函數(shù),詳見解析(2)證明見解析(3)

【解析】

(1)利用兩角和差的正弦公式求解即可.

(2)根據(jù)題意可知,對于任意實數(shù),,再列式利用恒成立問題求解即可.

(3)根據(jù)“平衡數(shù)對”的定義將用關(guān)于的三角函數(shù)表達,再利用三角函數(shù)的取值范圍求解即可.

1)若,則,

,

要使得為“可平衡”函數(shù),需使故對于任意實數(shù)均成立,只有,

此時,,故存在,所以是“可平衡”函數(shù).

2的定義域均為,

根據(jù)題意可知,對于任意實數(shù),,

,即對于任意實數(shù)恒成立,

只有,,故函數(shù)的“平衡”數(shù)對為,

對于函數(shù)而言,,

所以,

,,

,故,只有,所以函數(shù)的“平衡”數(shù)對為,

綜上可得函數(shù)的“平衡”數(shù)對相同.

3,所以,

,所以,

由于,所以,故,,

,

由于,所以時,,

,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,且),若存在非空集合,使得,且,并任意,都有,則稱集合S具有性質(zhì)P,稱為集合SP子集.

1)當(dāng)時,試說明集合S具有性質(zhì)P,并寫出相應(yīng)的P子集;

2)若集合S具有性質(zhì)P,集合T是集合S的一個P子集,設(shè),求證:任意,,都有

3)求證:對任意正整數(shù),集合S具有性質(zhì)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國已進入新時代中國特色社會主義時期,人民生活水平不斷提高.某市隨機統(tǒng)計了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據(jù)統(tǒng)計數(shù)據(jù)制成如圖頻率分布直方圖.

1)根據(jù)頻率分布直方圖估算P的平均值

2)若該市城區(qū)有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機抽取2戶,求這2P值的和超過100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面,E,F分別是,的中點.

1)求證:

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項和為且滿足,為常數(shù),).

1)求;

2)若數(shù)列是等比數(shù)列,求實數(shù)的值;

3)是否存在實數(shù),使得數(shù)列滿足:可以從中取出無限多項并按原來的先后次序排成一個等差數(shù)列?若存在,求出所有滿足條件的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)

1)試計算2012年的快遞業(yè)務(wù)量;

2)分別將2013年,2014年,…,2017年記成年的序號t1,2,3,45;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;

3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),圖象的一個對稱中心,圖象的一條對稱軸,且上單調(diào),則符合條件的值之和為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在直角梯形DCEF中,,,,將四邊形ABEF沿AB邊折成圖2.

1)求證:平面DEF

2)若,求平面DEF與平面EAC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點在圓上,且橢圓上一點與兩焦點圍成的三角形周長為.

1)求橢圓的方程;

2)過圓上一點作圓的切線交橢圓于兩點,證明:點在以為直徑的圓內(nèi).

查看答案和解析>>

同步練習(xí)冊答案