【題目】已知是圓錐的頂點,是圓錐底面的直徑,是底面圓周上一點,,,平面和平面將圓錐截去部分后的幾何體如圖所示.
(1)求與底面所成的角;
(2)求該幾何體的體積;
(3)求二面角的余弦值.
【答案】(1)(2)(3)
【解析】
(1)設(shè)O為BD的中點,連接CO,AO,則∠ACO為AC與底面所成的角,根據(jù)幾何法,即可求解;
(2)該幾何體可看作是半個圓錐和三棱錐組合而成,可分別計算體積,再求和;
(3)取DC的中點E,連接OE,AE,則有OE⊥CD,且AE⊥CD,則∠AEO為二面角的平面角,根據(jù)幾何法,即可求解二面角.
(1)設(shè)O為BD的中點,連接CO,AO,
則∠ACO為AC與底面所成的角,
由AC=BD=AD=AB=2,所以三角形ABD為正三角形,AO,
有CO=1,所以,
∠ACO=60°,AC與底面所成的角為60°;
(2)由題意∠CBD=60°,
故,
所以該幾何體的體積;
(3)取DC的中點E,連接OE,AE,
因為OC=OD,所以OE⊥CD,
同理AE⊥CD,
則∠AEO為二面角的平面角,
因為OC=OB=BC=1,
所以正三角形OBC,∠BOC=60°,∠COD=120°,∠OCD=30°,
所以OE,,
所以,
所以二面角的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示.
(1)求的值;
(2)求地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失的眾數(shù)以及中位數(shù);
(3)不經(jīng)過計算,直接給出地區(qū)200家實體店經(jīng)濟損失的平均數(shù)與6000的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費,超過200度但不超過400度的部分按元/度收費,超過400度的部分按1.0元/度收費.
(Ⅰ)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占,求, 的值;
(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;
(Ⅱ)若函數(shù)不存在零點,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】10名象棋選手進行單循環(huán)賽(即每兩名選手比賽一場).規(guī)定兩人對局勝者得2分,平局各得1分,負者得0分,并按總得分由高到低進行排序.比賽結(jié)束后,10名選手的得分各不相同,且第二名的得分是最后五名選手得分之和的.則第二名選手的得分是____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若該蛋糕店某一天制作生日蛋糕17個,設(shè)當天的需求量為,則當天的利潤(單位:元)是多少?
(2)若蛋糕店一天制作17個生日蛋糕.
①求當天的利潤(單位:元)關(guān)于當天需求量的函數(shù)解析式;
②求當天的利潤不低于600圓的概率.
(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個還是17個生日蛋糕?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為別為、,且過點和.
(1)求橢圓的標準方程;
(2)如圖,點為橢圓上一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com