【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,點(diǎn)E是棱PA的中點(diǎn),PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求證:PC⊥平面ABCD;
(Ⅲ)設(shè)PC=λAB,試判斷平面PAD⊥平面PAB能否成立;若成立,寫(xiě)出λ的一個(gè)值(只需寫(xiě)出結(jié)論).

【答案】證明:(Ⅰ)設(shè)AC∩BD=O,連接OE,

因?yàn)榈酌鍭BCD為正方形,所以O(shè)是AC的中點(diǎn),又點(diǎn)E是棱PA的中點(diǎn),

所以EO是的△PAC中位線,所以EO∥PC

因?yàn)镋O平面BDE,PC平面BDE,

所以PC∥平面BDE.

(Ⅱ)證法一:在△PAB和△PAD中,

因?yàn)锳B=AD,PB=PD,PA=PA,

所以△PAB≌△PAD,又點(diǎn)E是棱PA的中點(diǎn),

所以EB=ED,所以EO⊥BD,

因?yàn)槠矫鍮DE⊥平面ABCD,平面BDE∩平面ABCD=BD,EO平面BDE

所以EO⊥平面ABCD,所以EO⊥AC,EO⊥BD,

因?yàn)镋O∥PC,所以PC⊥AC,PC⊥BD,又AC∩BD=O

所以PC⊥平面ABCD.

證法二:連接PO,

因?yàn)榈酌鍭BCD是正方形,

所以O(shè)是BD的中點(diǎn),BD⊥AC,又PB=PD,所以PO⊥BD,

又PO∩AC=O,PO平面PAC,AC平面PAC

所以BD⊥平面PAC

又OE平面PAC,所以BD⊥OE,

因?yàn)槠矫鍮DE⊥平面ABCD,平面BDE∩平面ABCD=BD,EO平面BDE

所以EO⊥平面ABCD,所以EO⊥AC,EO⊥BD,

因?yàn)镺E∥PC,所以PC⊥AC,PC⊥BD,又AC∩BD=O

所以PC⊥平面ABCD.

(Ⅲ)不能成立.


【解析】(Ⅰ)設(shè)AC∩BD=O,連接OE,推導(dǎo)出EO∥PC,由此能證明PC∥平面BDE.(Ⅱ)法一:推導(dǎo)出△PAB≌△PAD,EO⊥BD,從而EO⊥平面ABCD,進(jìn)而EO⊥AC,EO⊥BD,由此得到PC⊥AC,PC⊥BD,從而能證明PC⊥平面ABCD.

法二:連接PO,推導(dǎo)出BD⊥AC,PO⊥BD,從而B(niǎo)D⊥平面PAC,進(jìn)而B(niǎo)D⊥OE,由此得到EO⊥平面ABCD,從而EO⊥AC,EO⊥BD,進(jìn)而PC⊥AC,PC⊥BD,由此能證明PC⊥平面ABCD.(Ⅲ)由PC=λAB,得到平面PAD⊥平面PAB不能成立.

【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)函數(shù)f(x)=log4(a )(a≠0),g(x)=log4(4x+1)﹣ 的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是某校120名學(xué)生假期閱讀時(shí)間(單位:小時(shí))的頻率分布表,現(xiàn)用分層抽樣的方法從[10,15),[15,20),[20,25),[25,30)四組中抽取20名學(xué)生了解其閱讀內(nèi)容,那么從這四組中依次抽取的人數(shù)是(

分組

頻數(shù)

頻率

[10,15)

12

0,10

[15,20)

30

a

[20,25)

m

0.40

[25,30)

n

0.25

合計(jì)

120

1.00


A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京是我國(guó)嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實(shí)數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n次多項(xiàng)式 ,在求fn(x0)值的時(shí)候,不同的算法需要進(jìn)行的運(yùn)算次數(shù)是不同的.例如計(jì)算 (k=2,3,4,…,n)的值需要k﹣1次乘法運(yùn)算,按這種算法進(jìn)行計(jì)算f3(x0)的值共需要9次運(yùn)算(6次乘法運(yùn)算,3次加法運(yùn)算).現(xiàn)按如圖所示的框圖進(jìn)行運(yùn)算,計(jì)算fn(x0)的值共需要次運(yùn)算.(
A.2n
B.2n
C.
D.n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不重合的平面α,β和兩條不同直線m,n,則下列說(shuō)法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(1)求橢圓的方程;
(2)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交橢圓C于另一點(diǎn)E,證明直線AE與x軸相交于點(diǎn)Q(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣2)及f(6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大;
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案