如圖,正方體的棱長為1,B′C∩BC′=O,求:
(1)AO與A′C′所成角;
(2)AO與平面ABCD所成角的正切值;
(3)平面AOB與平面AOC所成角.
分析:(1)根據(jù)A′C′∥AC,可得AO與A′C′所成角就是∠OAC,解Rt△AOC,求出∠OAC的大小.
(2)如圖,作OE⊥BC于E,連接AE,由平面BC′⊥平面ABCD,得OE⊥平面ABCD,∠OAE為OA與平面ABCD所成角,解在Rt△OAE,求出tan∠OAE的大。
(3)由OC⊥OA,OC⊥OB,可知OC⊥平面AOB,又OC?平面AOC,故平面AOB⊥平面AOC,從而得到平面AOB與平面AOC所成角為90°.
解答:解:(1)∵A′C′∥AC,∴AO與A′C′所成角就是∠OAC.∵OC⊥OB,AB⊥平面BC′,∴OC⊥OA,
在Rt△AOC中,OC═OC=
2
2
,AC=
2
,∴∠OAC=30°.(4分)
(2)如圖,作OE⊥BC于E,連接AE,∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD,∠OAE為OA與平面ABCD所成角.
在Rt△OAE中,OE=
1
2
,AE=
12+(
1
2
)
2
=
5
2
,∴tan∠OAE=
OE
AE
=
5
5
.(9分)
(3)∵OC⊥OA,OC⊥OB,∴OC⊥平面AOB.又∵OC?平面AOC,∴平面AOB⊥平面AOC,即平面AOB與平面AOC所成角為90°.(13分) 
點評:本題主要考查異面直線所成的角的定義和求法,求直線和平面所成的角,求二面角的大小的方法,找出這些角,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方體的棱長為1,C、D分別是兩條棱的中點,A、B、M是頂點,那么點M到截面ABCD的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方體的棱長為a,將正方體的六個面的中心連接起來,構(gòu)成一個八面體,這個八面體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體的棱長為1,線段B′D′上有兩個動點E,F(xiàn),EF=
3
2
,則下列結(jié)論中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江省高二上學期期末考試理科數(shù)學 題型:選擇題

如圖,正方體的棱長為,點在棱上,

,點是平面上的動點,且動點到直線

的距離與點到點的距離的平方差為,則動點的軌跡是(  )

A.圓   B.拋物線   C.雙曲線     D.直線

 

 

 

查看答案和解析>>

同步練習冊答案