(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓被直線分成兩部分的面積之比是           
1:1
∵直線過圓ρ=4的圓心,∴直線把圓分成
兩部分的面積之比是1:1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—4:坐標(biāo)系與參數(shù)方程
直線(極軸與x軸的非負(fù)半軸重合,且單位長度相同)。
(1)求圓心C到直線的距離;
(2)若直線被圓C截的弦長為的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.圓與圓的公共弦所在直線的極坐標(biāo)方程為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題有(1)、(2)、(3)三個(gè)選考題,每題7份,請(qǐng)考生任選2題作答,滿分14分.
如果多做,則按所做的前兩題計(jì)分.
選修4系列(本小題滿分14分)
(1)(本小題滿分7分)選修4-2:矩陣與變換
設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到倍,縱坐標(biāo)伸長到倍的伸壓變換.
(Ⅰ)求矩陣的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣以及橢圓的作用下的新曲線的方程.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程,曲線C的參數(shù)方程為為參數(shù)),求曲線C截直線l所得的弦長
(3)(本小題滿分7分)選修4—5:不等式選講
已知,且、、是正數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,點(diǎn)P的直角坐標(biāo)為。若以圓點(diǎn)O為極點(diǎn),軸半軸為極軸建立坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可以是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為(      )。
        B  
C          D  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知在極坐標(biāo)系下,點(diǎn)是極點(diǎn),則兩點(diǎn)間的距離
 _____________;的面積等于_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
本題是選作題,考生只能選做其中兩個(gè)小題.三個(gè)小題都作答的,以前兩個(gè)小題計(jì)算得分。
①選修4-4《坐標(biāo)系與參數(shù)方程》選做題(本小題滿分7分)
已知曲線C的參數(shù)方程是為參數(shù)),且曲線C與直線=0相交于兩點(diǎn)A、B求弦AB的長。
②選修4-2《矩陣與變換》選做題(本小題滿分7分)
已知矩陣的一個(gè)特征值為,它對(duì)應(yīng)的一個(gè)特征向量。
(Ⅰ)求矩陣M;
(Ⅱ)點(diǎn)P(1, 1)經(jīng)過矩陣M所對(duì)應(yīng)的變換,得到點(diǎn)Q,求點(diǎn)Q的坐標(biāo)。
③選修4-5《不等式選講》選做題(本小題滿分7分)
函數(shù)的圖象恒過定點(diǎn),若點(diǎn)在直上,其中
,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn),則它的極坐標(biāo)是                                            (      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案