精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐的底面是邊長為2的菱形,底面.

1)求證:平面;

2)若,直線與平面所成的角為,求四棱錐的體積.

【答案】1)證明見解析;(2

【解析】

1)通過ACBDPDAC可得平面;

2)由題先得出∠PBD是直線PB與平面ABCD所成的角,即∠PBD=45°,則可先求出菱形ABCD的面積,進而可得四棱錐P- ABCD的體積.

解:(1)因為四邊形ABCD是菱形,所以ACBD,

又因為PD⊥平面ABCD,平面ABCD,

所以PDAC,又,

AC⊥平面PBD;

2)因為PD⊥平面ABCD

所以∠PBD是直線PB與平面ABCD所成的角,

于是∠PBD=45°,

因此BD=PD=2.AB= AD=2,

所以菱形ABCD的面積為,

故四棱錐P- ABCD的體積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點.

(1)求證AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱椎中,底面是邊長為4的正方形,平面平面,二面角, .

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐,底面為邊長為2的菱形,平面,,,分別是,的中點.

(1)判定是否垂直,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求曲線在點處的切線方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的右焦點,點在橢圓上.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸,軸分別交于兩點.

(。┰O直線斜率分別為,求的值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設中心在原點,焦點在軸上的橢圓過點,且離心率為的右焦點,上一點,軸,的半徑為

1)求的方程;

2)若直線交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某次考試后,對全班同學的數學成績進行整理,得到表:

分數段

人數

5

15

20

10

將以上數據繪制成頻率分布直方圖后,可估計出本次考試成績的中位數是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018屆安徽省蚌埠市高三上學期第一次教學質量檢查】為監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取10件零件,度量其內徑尺寸(單位: .根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的內徑尺寸服從正態(tài)分布.

1)假設生產狀態(tài)正常,記表示某一天內抽取的10個零件中其尺寸在之外的零件數,求的數學期望;

2)某天正常工作的一條生產線數據記錄的莖葉圖如下圖所示:

①計算這一天平均值與標準差;

②一家公司引進了一條這種生產線,為了檢查這條生產線是否正常,用這條生產線試生產了5個零件,度量其內徑分別為(單位: ):85,95,103,109,119,試問此條生產線是否需要進一步調試,為什么?

參考數據: , ,

, ,

, .

查看答案和解析>>

同步練習冊答案