設(shè)全集U={x∈N|x≤5},A={0,1,2,3},B={0,3,4,5},則B∩(∁UA)=( 。
A、{3}
B、{4,5}
C、{3,4,5}
D、{4,5,6}
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)補集的定義求得∁UA,再根據(jù)兩個集合的交集的定義求得B∩(∁UA).
解答: 解:∵全集U={x∈N|x≤5},A={0,1,2,3},B={0,3,4,5},∴∁UA={4,5},
∴B∩(∁UA)={4,5},
故選:B.
點評:本題主要考查集合的表示方法、集合的補集,兩個集合的交集的定義和求法,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(4x-2-x6(x∈R)的展開式中常數(shù)項是( 。
A、-20B、-15
C、15D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z為純虛數(shù),若(2-i)z=a+i(i為虛數(shù)單位),則實數(shù)a的值為( 。
A、-
1
2
B、2
C、-2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,0)上的函數(shù)y=f(x)的圖象如圖所示,對于滿足-1<x1<x2<0的任意x1,x2,錯誤的結(jié)論是( 。
A、當x∈(-1,0)時,x>f(x)
B、當x∈(-1,0)時,導(dǎo)函數(shù)f′(x)為增函數(shù)
C、f(x2)-f(x1)≤x2-x1
D、x1f(x2)>x2f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B、C的對邊分別是a、b、c,且asinA+csinC-bsinB=
2
asinC,則cosB等于(  )
A、
1
2
B、
3
2
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有6個房間安排4個旅游者住宿,每人可以隨意進哪一間,而且一個房間也可以住多個人,求下列問題中各有多少種不同的住法?
(1)每人隨意選擇,則所有的入住方法;
(2)第1號房間有1人,第2號房間有3人;
(3)指定的4個房間中各有1人;
(4)恰有1個房間中有2人;
(5)恰有2個房間中各有2人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,對一切正整數(shù)n,點Pn(n,Sn)都在偶函數(shù)f(x)=x2+bx的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=2n+an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證當n為正整數(shù)時,f(n)=32n+2-8n-9能被64整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-2x)•lnx+ax2+2
(Ⅰ)當a=-1時,求f(x)在(1,f(1))處的切線方程;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-x-2;
(i)若函數(shù)g(x)有且僅有一個零點時,求a的值;
(ii)在(i)的條件下,若e-2<x<e,g(x)≤m,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案