【題目】已知函數(shù) .

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),設(shè)函數(shù),且函數(shù)有且僅有一個(gè)零點(diǎn),若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】

(1)求出時(shí), 的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線的方程;

(2),求得,令,求出導(dǎo)數(shù),令,求出導(dǎo)數(shù),求得單調(diào)性,可得的最大值,當(dāng)時(shí),,求出的單調(diào)性,由條件,即可得到的范圍.

解:(1)當(dāng)時(shí), 的定義域?yàn)?/span>

.

,

,曲線處的切線方程為.

(2)令,則

,

.

,

,上是減函數(shù),

,所以當(dāng)時(shí), ,當(dāng)時(shí), ,

上單調(diào)遞增,在上單調(diào)遞減,

.

當(dāng)函數(shù)有且僅有一個(gè)零點(diǎn)時(shí), .

當(dāng)時(shí), ,

,恒成立,只需.

,令,

,

數(shù)上單調(diào)遞增,在上單調(diào)遞

減,在上單調(diào)遞增,又,

,

,

,

,即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校計(jì)劃舉辦“國(guó)學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動(dòng),在活動(dòng)前,對(duì)所選的10名同學(xué)進(jìn)行了國(guó)學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(jī)(百分制)的莖葉圖如圖所示.

(1)分別計(jì)算這10名同學(xué)中,男女生測(cè)試的平均成績(jī);

(2)若這10名同學(xué)中,男生和女生的國(guó)學(xué)素養(yǎng)測(cè)試成績(jī)的標(biāo)準(zhǔn)差分別為S1,S2,試比較S1S2的大。ú槐赜(jì)算,只需直接寫出結(jié)果);

(3)規(guī)定成績(jī)大于等于75分為優(yōu)良,從這10名同學(xué)中隨機(jī)選取一男一女兩名同學(xué),求這兩名同學(xué)的國(guó)學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0,t),使得對(duì)任意不為零的實(shí)數(shù)a,b均有fx0)=a+b成立,則t的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求曲線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市2016630天的空氣質(zhì)量指數(shù)如下:

35

54

80

86

72

85

58

125

111

53

10

66

46

36

18

25

23

40

60

89

88

54

79

14

16

40

59

67

111

62

你覺得這個(gè)月的空氣質(zhì)量如何?請(qǐng)?jiān)O(shè)計(jì)適當(dāng)?shù)念l率分布直方圖展示這組數(shù)據(jù),并結(jié)合空氣質(zhì)量分級(jí)標(biāo)準(zhǔn)分析數(shù)據(jù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

(1)求雙曲線的方程;

(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

(3)過圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn), 中點(diǎn)為

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù),).

(1)當(dāng)時(shí),若曲線上存在兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,求直線的斜率;

(2)在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點(diǎn),若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)任意實(shí)數(shù),恒有,且當(dāng),又.

1)判斷的奇偶性;

2)求在區(qū)間上的最大值;

3)是否存在實(shí)數(shù),使得不等式對(duì)一切都成立?若存在求出;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某大學(xué)數(shù)學(xué)系圖書室中任選一本書,設(shè){數(shù)學(xué)書}{中文版的書},{2018年后出版的書},問:

1表示什么事件?

2)在什么條件下,有

3表示什么意思?

4)如果,那么是否意味著圖書室中的所有的數(shù)學(xué)書都不是中文版的?

查看答案和解析>>

同步練習(xí)冊(cè)答案