【題目】從雙曲線 ﹣ =1(a>0,b>0)的左焦點F引圓x2+y2=a2的切線,切點為T,延長FT交雙曲線右支于P點,若M為線段FP的中點,O為坐標原點,則|MO|﹣|MT|等于( )
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為菱形,E為AC與BD的交點,PA⊥平面ABCD,M為PA中點,N為BC中點.
(1)證明:直線MN∥平面PCD;
(2)若點Q為PC中點,∠BAD=120°,PA= ,AB=1,求三棱錐A﹣QCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點, .
(1)λ為何值時,MN∥平面ABC?
(2)在(1)的條件下,求直線AN與平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是雙曲線 的右頂點,F(c,0)是右焦點,若拋物線 的準線l上存在一點P,使∠APF=30°,則雙曲線的離心率的范圍是( )
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)設g(x)是f(x)的導函數,求函數g(x)的極值;
(2)是否存在常數a,使得x∈[1,+∞)時,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為 + =1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而以雙曲線C2的左、右頂點分別是橢圓C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C2相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數分別為2、3、4,乙袋中紅色、黑色、白色小球的個數均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功.某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數為隨機變量X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車的使用年數x與所支出的維修費用y的統(tǒng)計數據如表:
使用年數x(單位:年) | 1 | 2 | 3 | 4 | 5 |
維修總費用y(單位:萬元) | 0.5 | 1.2 | 2.2 | 3.3 | 4.5 |
根據上表可得y關于x的線性回歸方程 = x﹣0.69,若該汽車維修總費用超過10萬元就不再維修,直接報廢,據此模型預測該汽車最多可使用( )
A.8年
B.9年
C.10年
D.11年
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com