解答題

已知函數(shù)f(x)對x、y∈R都有f(xy)=f(x)+f(y).

(1)求f(0);

(2)證明:f(x)為奇函數(shù).

 

答案:
解析:

(1)解:由函數(shù)的定義域為R,知f(0)存在-f(xy)=f(x)+f(y)中,

xy=0,得,f(0)=f(0)+f(0),則f(0)=0.

(2)證明:在R中任取x,則-xR

f(xy)=f(x)+f(y)中,令y=-x

f[x+(-x)]=f(x)+f(-x),即f(0)=f(x)+f(-x).

由(1)知,f(0)=0,∴f(x)=-f(-x),

f(x)為奇函數(shù).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

已知函數(shù)f(x)=m(x+)的圖象與函數(shù)h(x)=(x+)+2的圖象關(guān)于點(diǎn)A(0,1)對稱.

(1)求m的值;

(2)若g(x)=f(x)+在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

已知函數(shù)f(x)的圖像與函數(shù)h(x)=x++2的圖像關(guān)于點(diǎn)A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

已知函數(shù)f(x)=

(1)求f(x)的定義域;

(2)用定義判斷f(x)的奇偶性;

(3)在[-π,π]上作出f(x)的圖象;

(4)指出f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

解答題

已知函數(shù)f(x)的定義域是R,對任意x、y∈R,都有f(xy)=f(x)+f(y),且x>0時,f(x)<0f(1)=2,求f(x)在[33]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:047

解答題

已知函數(shù)f(x)=x3-x+c定義在區(qū)間[0,1]上,x1、x2∈[0,1]且x1≠x2

求證:(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<2|x2-x1|;

(3)|f(x2)-f(x1)|<1.

查看答案和解析>>

同步練習(xí)冊答案