【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當(dāng)a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.

【答案】
(1)解:∵ ,∴ ,

∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,

∴|m|≤1,∴﹣1≤m≤1,∴實數(shù)m的最大值為1


(2)解:當(dāng) 時, =

,

,

∴實數(shù)a的取值范圍是


【解析】(1)若不等式f(x)﹣f(x+m)≤1恒成立,利用f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,求實數(shù)m的最大值;(2)當(dāng)a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點, ,可得 ,即可求實數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,側(cè)面ABD,ACD是全等的直角三角形,AD是公共的斜邊且AD= ,BD=CD=1,另一側(cè)面ABC是正三角形.
(1)求證:AD⊥BC;
(2)若在線段AC上存在一點E,使ED與平面BCD成30°角,試求二面角A﹣BD﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億,為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量(個)

頻數(shù)

頻率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
(Ⅱ)若從這100位同學(xué)中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學(xué)生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D= ,給出下列四個命題:
P1(x,y)∈D,x+y+1≥0;
P2(x,y)∈D,2x﹣y+2≤0;
P3(x,y)∈D, ≤﹣4;
P4(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.

(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:+=1,(ab0)的離心率為,點(2,)在C上
(1)求C的方程;
(2)直線l不經(jīng)過原點O,且不平行于坐標(biāo)軸,lC有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(2015·新課標(biāo)Ⅱ)設(shè)函數(shù)f(x)是奇函數(shù)f(x)(xR)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x0時,xf'(x)-f(x)0,則使得f(x)0成立的x的取值范圍是()


A.(-,-1)(0,1)
B.(-1,0)(1,+
C.(-,-1)(-1,0)
D.(0,1)(1,+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對于不相等的實數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對于任意不相等的實數(shù)x1, x2 , 都有m>0;
(2)對于任意的a及任意不相等的實數(shù)x1, x2 , ,都有n>0;
(3)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=n;
(4)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案