【題目】某技術(shù)公司新開(kāi)發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

產(chǎn)品A

8

12

40

32

8

產(chǎn)品B

7

18

40

29

6


(1)試分別估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:由檢測(cè)結(jié)果統(tǒng)計(jì)表,得產(chǎn)品A為正品的概率為: = ,

產(chǎn)品B為正品的概率為: =


(2)解:隨機(jī)變量X的所有取值為180,90,60,﹣30,

P(X=180)= = ,

P(X=90)= = ,

P(X=60)= =

P(X=﹣30)= = ,

∴X的分布列為:

X

180

90

60

﹣30

P

E(X)= =132


【解析】(1)由檢測(cè)結(jié)果統(tǒng)計(jì)表,利用等可能事件概率計(jì)算公式能估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率.(2)隨機(jī)變量X的所有取值為180,90,60,﹣30,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)據(jù)是宜昌市個(gè)普通職工的年收入,設(shè)這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是( )

A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校按分層抽樣的方法從高中三個(gè)年級(jí)抽取部分學(xué)生調(diào)查,從三個(gè)年級(jí)抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級(jí)共有學(xué)生1 200,并從中抽取了40.

(1)該校的總?cè)藬?shù)為多少?(2)三個(gè)年級(jí)分別抽取多少人?

(3)在各層抽樣中可采取哪種抽樣方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)兩定點(diǎn),動(dòng)點(diǎn),滿足,動(dòng)點(diǎn)的軌跡為曲線,給出下列五個(gè)命題:

①存在,使曲線過(guò)坐標(biāo)原點(diǎn);

②對(duì)于任意,曲線軸有三個(gè)交點(diǎn);

③曲線關(guān)于軸對(duì)稱,但不關(guān)于軸對(duì)稱;

④若三點(diǎn)不共線,則周長(zhǎng)最小值為;

⑤曲線上與不共線的任意一點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為,則四邊形的面積不大于.

其中真命題的序號(hào)是__________(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<π的圖象向左平移 個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)所得的圖象解析式為y=sinx,則y=sin(ωx+φ)圖象上離y軸距離最近的對(duì)稱中心為(
A.( ,0)
B.( π,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案