【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形, ,平面 平面, 平面,點(diǎn)為的中點(diǎn),連接.
(1) 求證: ∥平面;
(2)若,求三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)證明:不論m取什么實(shí)數(shù)時,直線l與圓恒交于兩點(diǎn);
(2)求直線l被圓C截得的線段的最短長度以及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(m﹣2) +2 , = +(m+1) ,其中 、 分別為x、y軸正方向單位向量.
(1)若m=2,求 與 的夾角;
(2)若( + )⊥( ﹣ ),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.
(1)求點(diǎn)的軌跡方程;
(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)在軸的上方, ,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,G1 , G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是( )
A.相交
B.平行
C.異面
D.以上都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC的高PO為h,點(diǎn)D為側(cè)棱PC的中點(diǎn),PO與BD所成角的余弦值為 ,則正三棱錐P﹣ABC的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點(diǎn)A(﹣1,0),B(1,0),C(3,2),其外接圓為⊙H.若直線l過點(diǎn)C,且被⊙H截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com