【題目】已知函數(shù)f(x)excos xx.

(1)求曲線yf(x)在點(0,f(0))處的切線方程;

(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

【答案】(1)y1;(2)最大值為1,最小值為.

【解析】(1)因為f(x)=excos xx,

所以f′(x)=ex(cos x-sin x)-1,f′(0)=0.

又因為 f(0)=1,

所以曲線yf(x)在點(0,f(0))處的切線方程為y=1.

(2)設(shè)h(x)=ex(cos x-sin x)-1,

h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.

當(dāng)x時,h′(x)<0,

所以h(x)在區(qū)間上單調(diào)遞減.

所以對任意xh(x)<h(0)=0,

f′(x)<0.

所以函數(shù)f(x)在區(qū)間上單調(diào)遞減.

因此f(x)在區(qū)間上的最大值為f(0)=1,最小值為f=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象與直線恰有三個不同的交點,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中.

1)當(dāng),求函數(shù)的單調(diào)區(qū)間

2)若對于任意,都有恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時,若存在正實數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,求函數(shù)的最小值;

2)若對于任意恒成立,求a的取值范圍;

(3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓,且點到橢圓C的兩焦點的距離之和為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程

(Ⅱ),是橢圓上的兩個點,線段的中垂線的斜率為,且直線交于點,求證:點在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間.

為了解 兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取 兩個型號的手機各臺,在相同條件下進(jìn)行測試,統(tǒng)計結(jié)果如下,

手機編號

型待機時間(

型待機時間(

其中, 是正整數(shù),且

)該賣場有型手機,試估計其中待機時間不少于小時的臺數(shù).

)從型號被測試的臺手機中隨機抽取臺,記待機時間大于小時的臺數(shù)為,求的分布列及其數(shù)學(xué)期望.

)設(shè), 兩個型號被測試手機待機時間的平均值相等,當(dāng)型號被測試手機待機時間的方差最小時,寫出 的值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a,

當(dāng)時,若處取得極小值,求a的值;

當(dāng)時.

若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;

若存在實數(shù),使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上

)求橢圓的方程

設(shè)動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點 (兩點均不在坐標(biāo)軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案