已知拋物線的焦點(diǎn)坐標(biāo)為,過的直線交拋物線于兩點(diǎn),直線分別與直線:相交于兩點(diǎn).
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
(1);(2)證明過程詳見解析.
解析試題分析:本題主要考查拋物線、直線的方程,以及直線與拋物線的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等.第一問,利用拋物線的標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)求出,代入即可;第二問,討論直線垂直和不垂直軸2種情況,當(dāng)直線垂直于軸時,2個三角形相似,面積比為定值,當(dāng)直線不垂直于軸時,設(shè)出直線的方程,設(shè)出四個點(diǎn)坐標(biāo),利用直線與拋物線相交列出方程組,消參得到方程,利用兩根之積得為定值,而面積比值與有關(guān),所以也為定值.
試題解析:(1)由焦點(diǎn)坐標(biāo)為 可知
所以,所以拋物線的方程為 5分
(2)當(dāng)直線垂直于軸時,與相似,
所以, 7分
當(dāng)直線與軸不垂直時,設(shè)直線AB方程為,
設(shè),,,,
解 整理得, 9分
所以, 10分
,
綜上 12分
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.直線方程;3.根與系數(shù)關(guān)系;4.三角形面積公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng) 時,求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓以坐標(biāo)軸為對稱軸,且經(jīng)過點(diǎn)、.記其上頂點(diǎn)為,右頂點(diǎn)為.
(1)求圓心在線段上,且與坐標(biāo)軸相切于橢圓焦點(diǎn)的圓的方程;
(2)在橢圓位于第一象限的弧上求一點(diǎn),使的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓心坐標(biāo)為的圓與軸及直線均相切,切點(diǎn)分別為、,另一圓與圓、軸及直線均相切,切點(diǎn)分別為、.
(1)求圓和圓的方程;
(2)過點(diǎn)作的平行線,求直線被圓截得的弦的長度;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn),離心率為,過點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在軸上方有一段曲線弧,其端點(diǎn)、在軸上(但不屬于),對上任一點(diǎn)及點(diǎn),,滿足:.直線,分別交直線于,兩點(diǎn).
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請問:當(dāng)點(diǎn)P運(yùn)動時,是否總是相等?若是,請給出證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com