【題目】某造船公司年造船量是20艘,已知造船艘的產(chǎn)值函數(shù)為 (單位:萬(wàn)元),成本函數(shù)為(單位:萬(wàn)元),又在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.

(1)求利潤(rùn)函數(shù)及邊際利潤(rùn)函數(shù).(提示:利潤(rùn)=產(chǎn)值-成本)

(2)問(wèn)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

(3)求邊際利潤(rùn)函數(shù)的單調(diào)遞減區(qū)間,并說(shuō)明單調(diào)遞減在本題中的實(shí)際意義是什么?

【答案】(1);(2)12;(3).

【解析】

1)先根據(jù)利潤(rùn)=產(chǎn)值-成本求P(x),再求邊際利潤(rùn)函數(shù).(2)利用導(dǎo)數(shù)求年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大.(3)利用二次函數(shù)求邊際利潤(rùn)函數(shù)的單調(diào)遞減區(qū)間,并說(shuō)明單調(diào)遞減在本題中的實(shí)際意義.

(1)P(x)=R(x)-C(x)=-10x3+45x2+3240x-5(x∈N+,且1≤x≤20);

MP(x)=P(x+1)-P(x)=-30x2+60x+3275(x∈N+,且1≤x≤19).

(2)P'(x)=-30x2+90x+3240=-30(x-12)(x+9),

∵x>0,∴P'(x)=0時(shí),x=12,

當(dāng)0<x<12時(shí),P'(x)>0,

當(dāng)x>12時(shí),P'(x)<0,∴x=12時(shí),P(x)有最大值.

即年造船量安排12艘時(shí),可使公司造船的年利潤(rùn)最大.

(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.所以,當(dāng)x≥1時(shí),MP(x)是減函數(shù),

所以單調(diào)減區(qū)間為[1,19],且x∈N+.

MP(x)是減函數(shù)的實(shí)際意義是:隨著產(chǎn)量的增加,每艘船的利潤(rùn)與前一艘船的利潤(rùn)比較,利潤(rùn)在減少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓)的上頂點(diǎn)為,圓經(jīng)過(guò)點(diǎn)

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線交橢圓兩點(diǎn),過(guò)點(diǎn)作直線的垂線交圓于另一點(diǎn).若△PQN的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若是偶函數(shù),求的值;

2)設(shè)函數(shù),當(dāng)時(shí),有且只有一個(gè)實(shí)數(shù)根,求的取值范圍;

3)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)數(shù)根,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個(gè),其中紅球5個(gè),白球3個(gè),藍(lán)球2個(gè).現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個(gè)球.重復(fù)以上操作,最多取3次,過(guò)程中如果取出藍(lán)色球則不再取球.

1)求整個(gè)過(guò)程中恰好取到2個(gè)白球的概率;

2)求取球次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義城為R的函數(shù),若滿足:①;②當(dāng),且時(shí),都有;③當(dāng)時(shí),都有,則稱(chēng)偏對(duì)稱(chēng)函數(shù)”.下列函數(shù)是偏對(duì)稱(chēng)函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】上饒市在某次高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績(jī)數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)分析,結(jié)果這50名學(xué)生的成績(jī)?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,,第六組,得到如圖所示的頻率分布直方圖:

1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績(jī)的平均分?jǐn)?shù);

2)若從這50名學(xué)生中成績(jī)?cè)?/span>125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.

附:若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空間中有不共面的個(gè)點(diǎn).求證:存在無(wú)窮個(gè)平面,恰好通過(guò)其中的兩個(gè)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)判斷的單調(diào)性,并證明之;

2)若存在實(shí)數(shù),,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對(duì)?(每?jī)蓷l組成一對(duì))

查看答案和解析>>

同步練習(xí)冊(cè)答案