(1)求證:數(shù)列{an+1}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)證明存在k∈N*,使得≤對(duì)任意n∈N*均成立.
(1)證明:由an+1=2an+1得an+1+1=2(an+1),
∵a1>0,∴a1+1>1.∴{an+1}是等比數(shù)列.∵<,
∴<,即<·對(duì)任意n∈N*恒成立.
∴<4.∴a1≥3.∵a1<4,a1∈N*,∴a1=3.
∴an+1=4·2n-1,∴an=2n+1-1.
(2)解:由2(λn+bn)=2nλn+an+1(λ>0),得bn=(n-1)λn+2n,
設(shè)數(shù)列{(n-1)λn}的前n項(xiàng)的和為Tn,∴Tn=λ2+2λ3+3λ4+…+(n-1)λn.
λTn=λ3+2λ4+…+(n-2)λn+(n-1)λn+1,(1-λ)Tn=λ2+λ3+λ4+…+λn-(n-1)λn+1,
當(dāng)λ=1時(shí),Tn=1+2+…+(n-1)=,當(dāng)λ≠1時(shí),Tn=,
∴Sn=
(3)證明:存在k=1滿足題意,
≤2n·λn+1≤(n-1)λn+2+4(n-1)λn+2nλ2.(*)
當(dāng)n≥2時(shí),∵(n-1)λn+2+4(n-1)λn+2nλ2=(n-1)λn(λ2+4)+2nλ2≥(n-1)λn·4λ+2nλ2>(4n-4)λn+1≥2nλn+1,
又n=1時(shí),(*)式成立.
∴對(duì)任意n∈N*,(*)式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
n |
i=1 |
1 |
1+ai |
1 |
2 |
bn+1 |
bn |
bk+1 |
bk |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:數(shù)列{an+1}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)證明存在k∈N*,使得≤對(duì)任意n∈N*均成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省徐州市高三第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷Ⅰ(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com