直線被曲線截得的弦長為           ;

試題分析:聯(lián)立,所以弦長為。
點評:本題主要考查弦長的求法,在求直線與圓錐曲線相交的弦長時一般采用韋達定理設(shè)而不求的方法,在求解過程中一般采取步驟為:設(shè)點→聯(lián)立方程→消元→韋達定理→弦長公式。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點為右焦點為,短軸兩個端點為.與軸不垂直的直線與橢圓C交于不同的兩點,記直線、的斜率分別為、,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點,并求出定點坐標.
(3)當弦 的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標準方程;
(2)已知過點的直線與橢圓交于,兩點.
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,左、右焦點分別是,若橢圓上的點的距離和等于
(Ⅰ)寫出橢圓的方程和焦點坐標;
(Ⅱ)設(shè)點是橢圓的動點,求線段中點的軌跡方程;
(Ⅲ)直線過定點,且與橢圓交于不同的兩點,若為銳角(為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)的一個頂點為,離心率為,直線與橢圓交于不同的兩點、.(1) 求橢圓的方程;(2) 當的面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點是以為左、右焦點的雙曲線左支上一點,且滿足,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上的點, 是橢圓的兩個焦點,則的值為
A. 10B. 8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓中,分別是其左右焦點,若,則該橢圓離心率的取值范圍是 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案