分析 將坐標(biāo)代入求解φ,可得函數(shù)y=sin(πx+φ)的解析式,再求解f(0)即可.
解答 解:∵函數(shù)y=sin(πx+φ)過(guò)點(diǎn)$({\frac{1}{6},1})$,
∴1=sin($\frac{π}{6}+$φ)
得:φ$+\frac{π}{6}$=$\frac{π}{2}+2kπ$,(k∈Z)
φ=$\frac{π}{3}+2kπ$.
那么:函數(shù)y=sin($πx+\frac{π}{3}+2kπ$),
當(dāng)x=0時(shí),可得y=sin($\frac{π}{3}+2kπ$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故f(0)=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征和計(jì)算化簡(jiǎn)能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,2,3} | B. | {-1,0,1,2} | C. | {0,1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=3x | B. | y=x2 | C. | y=lnx | D. | y=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32π}{3}$ | B. | 4π | C. | 6π | D. | $\frac{9π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 84,4.84 | B. | 84,1.6 | C. | 85,4 | D. | 85,1.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com