4.設集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有( 。
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

分析 化解集合M和N,根據(jù)集合的基本運算依次判斷即可.

解答 解:集合M={x|x2≥x}={x|x≥1或x≤0},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0}={x|-1<x<0}.
∴N⊆M,故A正確.
故選A.

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求證:BE=DE;
(Ⅱ)若AB=2$\sqrt{3}$,AE=3$\sqrt{2}$,平面EBD⊥平面ABCD,直線AE與平面ABD所成的角為45°,求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)既是奇函數(shù)又在定義域上單調遞增的是(  )
A.$f(x)=\frac{{{x^2}-2x}}{x-2}$B.f(x)=x-$\frac{1}{x}$C.f(x)=2x-2-xD.f(x)=x|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在直角三角形ABC中,∠C=90°,AB=4,AC=2,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB},則\overrightarrow{CD}•\overrightarrow{CB}$=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標平面中,△ABC的兩個頂點為B(0,-1),C(0,1),平面內兩點P、Q同時滿足:
①$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;②|$\overrightarrow{QA}$|=|$\overrightarrow{QB}$|=|$\overrightarrow{QC}$|;③$\overrightarrow{PQ}$∥$\overrightarrow{BC}$.
(1)求頂點A的軌跡E的方程;
(2)過點F($\sqrt{2}$,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點A的軌跡E的相交弦分別為A1B1,A2B2,設弦A1B1,A2B2的中點分別為M,N.
(。┣笏倪呅蜛1A2B1B2的面積S的最小值;
(ⅱ)試問:直線MN是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在產品質量檢驗時,常從產品中抽出一部分進行檢查.現(xiàn)在從98件正品和2件次品共100件產品中,任意抽出3件檢查.
(1)共有多少種不同的抽法?
(2)恰好有一件是次品的抽法有多少種?
(3)至少有一件是次品的抽法有多少種?
(4)恰好有一件是次品,再把抽出的3件產品放在展臺上,排成一排進行對比展覽,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,陰影部分的面積為( 。
A.9B.$\frac{9}{2}$C.$\frac{13}{6}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,若a1=$\frac{3}{5}$,則a2015=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設{an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前10項和S10=$\frac{85}{2}$.

查看答案和解析>>

同步練習冊答案