已知一圓的圓心為點(1,2),一條直徑的兩個端點分別在x軸和y軸上,則此圓的方程是
 
考點:圓的標準方程
專題:直線與圓
分析:首先根據(jù)已知條件求出直徑兩個端點的坐標,從而可得到圓的半徑,進而求出圓的方程.
解答: 解:設(shè)直徑的兩個端點分別為:A(a,0),B(0,b).
a
2
=1
,
b
2
=2

∴a=2,b=4.
∴圓的半徑為
r=
(2-1)2+(0-2)2
=
5

∴此圓的方程為(x-1)2+(y-2)2=5.
故答案為:(x-1)2+(y-2)2=5.
點評:本題考查中點坐標公式,圓的標準方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)的數(shù)學(xué)測試中設(shè)置了“數(shù)學(xué)與邏輯”和“閱讀與表達”兩個內(nèi)容,成績分為A、B、C、D、E五個等級.某班考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績等級為B的考生有10人.

(1)求該班考生中“閱讀與表達”科目中成績等級為A的人數(shù);
(2)若等級A、B、C、D、E分別對應(yīng)5分、4分、3分、2分、1分,該考場中有2人10分,3人9分,從這5人中隨機抽取2人,求2人成績之和為19分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校政教處為檢查各班落實學(xué)!皩W(xué)生素養(yǎng)五十條”的規(guī)定情況,從各班抽取了一批學(xué)生進行測試,全部學(xué)生參加了“理論部分(如圖1)”和“模擬現(xiàn)場(如圖2)”兩項測試,成績均分為A,B,C,D,E五個等級.某考場考生兩項測試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中“理論部分”科目測試成績?yōu)锽的考生有10人.
(1)求該考場考生中“模擬現(xiàn)場”科目中成績?yōu)锳的人數(shù);
(2)若等級A,B,C,D,E分別對應(yīng)5分,4分,3分,2分,1分.
(i)求該考場考生“理論部分”科目的平均分;
(ii)若該考場共有10人得分大于7分,其中有2人10分,2人9分,6人8分.從這10人中隨機抽取兩人,求兩人成績之和的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x-x2;則f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a3+a4+a5+a6+a7=500,則a2+a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個三棱柱的底面是正三角形,其正(主)視圖如圖所示,則它的全面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+1,x<3
x
,x>3
,則f[f(1)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5男和3女8位志愿者中任選3人參加冬奧會火炬接力活動,若隨機變量ξ表示所選3人中女志愿者的人數(shù),則ξ的數(shù)學(xué)期望是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在其圖象上任意一點(x0,y0)處的切線方程為y-y0=(3
x
2
0
-6x0)(x-x0),且f(3)=0,則不等式
x-1
f(x)
≥0的解集為
 

查看答案和解析>>

同步練習(xí)冊答案