函數(shù)y=ax-2(a>0且a≠1)過定點(  )
A、(1,2)
B、(2,1)
C、(2,0)
D、(0,2)
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)的性質(zhì)即可求得y=ax-2過定點.
解答: 解:∵y=ax-2
∴當(dāng)x-2=0時,即x=2時,y=1.
∴y=ax-2過定點(2,1).
故選:B.
點評:本題考查指數(shù)函數(shù)的性質(zhì),考查曲線過定點問題,令冪指數(shù)為0是解決問題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)對任意實數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy且f(0)=0,
f(
π
2
)=1.給出下列結(jié)論:①f(
π
4
)=
1
2
  ②f(x)為奇函數(shù)  ③f(x)為周期函數(shù) ④f(x)在(0,π)內(nèi)單調(diào)遞增,其中正確的結(jié)論序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是( 。
A、a=(-2,5)與b=(4,-10)方向相同
B、a=(4,10)與b=(-2,-5)方向相反
C、a=(-3,1)與b=(-2,-5)方向相反
D、a=(2,4)與b=(-3,1)的夾角為銳角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①y=f(x+1)是偶函數(shù);②在區(qū)間[1,+∞)上是增函數(shù).若x1<x2<0且x1+x2<-2,則f(-x1)與f(-x2)的大小關(guān)系是( 。
A、f(-x1)>f(-x2
B、f(-x1)<f(-x2
C、f(-x1)=f(-x2
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin(2x+
π
4
)的圖象向右平移
π
8
個單位,再把所得圖象上各點的橫坐標(biāo)縮短到原來的
1
2
,則所得圖象的函數(shù)解析式是( 。
A、y=sin(4x+
3
8
π)
B、y=sin(4x+
π
8
C、y=sin4x
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={1,2,3,4,5,6,7},S1,S2,…,Sk都是M的含兩個元素的子集,且滿足:對任意的Si={ai,bi},Sj={aj,bj}(i≠j,i,j∈{1,2,3…k),都有min{
ai
bi
,
bi
ai
}≠min{
aj
bj
,
bj
aj
}(min{x,y}表示兩個數(shù)x,y中的較小者),則k的最大值是( 。
A、17B、18C、19D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),且f(x)的圖象是連續(xù)不斷的,當(dāng)x≠0時,有f′(x)=
f(x)
x
>0,則函數(shù)F(x)=xf(x)+
1
x
的零點個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(2a-1)sinx+8a,x∈(-
π
2
,0)
2ax,x∈[0,+∞)
在(-
π
2
,+∞)上單調(diào)遞減,那么實數(shù)a的取值范圍是(  )
A、(
1
2
,1)
B、(0,
1
4
]
C、[
1
4
,1)
D、[
1
4
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
B、f(x)=2sin(
1
2
x-
π
6
C、f(x)=2sin(2x-
π
6
D、f(x)=2sin(2x+
π
6

查看答案和解析>>

同步練習(xí)冊答案