已知A(1,1)為橢圓內(nèi)一點(diǎn),F1為橢圓左焦點(diǎn),P為橢圓上一動(dòng)點(diǎn),則|PF1|+|PA|的最大值和最小值分別是___________.

解析:由可知a=3,b=,c=2,左焦點(diǎn)?F1(-2,0)?,右焦點(diǎn)F2(2,0).?

由橢圓定義,|PF1|=2a-|PF2|=6-|PF2|,?

∴|PF1|+|PA|=6-|PF2|+|PA|=6+|PA|-|PF2|.?

由||PA|-|PF2||≤|AF2|=知-≤|PA|-|PF2|≤.當(dāng)PAF2延長(zhǎng)線上的P2處時(shí),取右等號(hào);當(dāng)PAF2的反向延長(zhǎng)線上的P1處時(shí),取左等號(hào),即|PA|-|PF2|的最大值、最小值分別為.于是|PF1|+|PA|的最大值是,最小值是.

答案:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長(zhǎng)為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

下圖展示了一個(gè)由區(qū)間(其中為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間中的實(shí)數(shù)對(duì)應(yīng)線段上的點(diǎn),如圖1;將線段圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)、恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2 ;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在軸上,已知此時(shí)點(diǎn)的坐標(biāo)為,如圖3,在圖形變化過程中,圖1中線段的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線與直線交于點(diǎn),則與實(shí)數(shù)對(duì)應(yīng)的實(shí)數(shù)就是,記作,

現(xiàn)給出下列5個(gè)命題

;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆海南省高二上學(xué)期期末文科數(shù)學(xué)試題(解析版) 題型:解答題

(本小題滿分12分)已知A,B兩點(diǎn)是橢圓 與坐標(biāo)軸正半軸的兩個(gè)交點(diǎn).

(1)設(shè)為參數(shù),求橢圓的參數(shù)方程;

(2)在第一象限的橢圓弧上求一點(diǎn)P,使四邊形OAPB的面積最大,并求此最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);

(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢

圓E和直線的方程,若不能,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省樂山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知P是橢畫+=1左準(zhǔn)線上一點(diǎn),F(xiàn)1、F2分別是其左、右焦點(diǎn),PF2與橢圓交于點(diǎn)Q,且=2,則||的值為( )
A.
B.4
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案