精英家教網 > 高中數學 > 題目詳情

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿場售價與上市時間的關系如圖一的一條折線表示;西紅柿的種植成本與上市時間的關系如圖二的拋物線段表示.

(1)寫出圖一表示的市場售價與時間的函數關系式p=f(t);寫出圖二表示的種植成本與時間的函數關系式Q=g(t);
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?(注:市場售價各種植成本的單位:元/102㎏,時間單位:天)

【答案】
(1)解:由圖一可得市場售價與時間的函數關系為

由圖二可得種植成本與時間的函數關系為


(2)解:設t時刻的純收益為h(t),則由題意得h(t)=f(t)﹣g(t),

即h(t)=

當0≤t≤200時,配方整理得h(t)=

所以,當t=50時,h(t)取得區(qū)間[0,200]上的最大值100;

當200<t≤300時,配方整理得h(t)=

所以,當t=300時,h(t)取得區(qū)間(200,300)上的最大值87.5

綜上,由100>87.5可知,h(t)在區(qū)間[0,300]上可以取得最大值100,此時t=50,

即從二月一日開始的第50天時,上市的西紅柿純收益最大


【解析】(1)觀察圖一可知此函數是分段函數(0,200)和(200,300)的解析式不同,分別求出各段解析式即可;第二問觀察函數圖象可知此圖象是二次函數的圖象根據圖象中點的坐標求出即可.(2)要求何時上市的西紅柿純收益最大,先用市場售價減去種植成本為純收益得到t時刻的純收益h(t)也是分段函數,分別求出各段函數的最大值并比較出最大即可.
【考點精析】本題主要考查了函數的最值及其幾何意義的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲挡拍苷_解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若函數g(x)=f(x)﹣2tx在區(qū)間[﹣1,5]上是單調函數,求實數t的取值范圍;
(3)若關于x的方程f(x)=x+m有區(qū)間(﹣1,2)上有唯一實數根,求實數m的取值范圍(注:相等的實數根算一個).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知公比不為1的等比數列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數列{an}的通項公式an;
(2)若數列{bn}滿足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求數列 的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log2(16x+k)﹣2x (k∈R)是偶函數.
(1)求k;
(2)若不等式m﹣1≤f(x)≤2m+log217在x∈[﹣1, ]上恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統計,得到如圖所示的頻率分布直方圖.
附:K2=
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經市場調查,某商品每噸的價格為x(2x14)元時,該商品的月供給量為y1噸,y1=ax16a≥8);月需求量為y2 .當該商品的需求量不小于供給量時,銷售量等于供給量;當該商品的需求量小于供給量時,銷售量等于需求量.該商品的月銷售額f(x)等于月銷售量與價格的乘積.

(1)若a=32,問商品的價格為多少元時,該商品的月銷售額f(x)最大?

(2)記需求量與供給量相等時的價格為均衡價格.若該商品的均衡價格不低于每噸10元,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對任意x∈|[﹣2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達式;
(2)若a,b,c為正整數,函數f(x)在(﹣ , )上有兩個不同零點,求a+b+c的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列敘述: ①若α,β均為第一象限,且α>β,則sinα>sinβ
②函數f(x)=sin(2x﹣ )在區(qū)間[0, ]上是增函數;
③函數f(x)=cos(2x+ )的一個對稱中心為(﹣ ,0)
④記min{a,b}= ,若函數f(x)=min{sinx,cosx},則f(x)的值域為[﹣1, ].
其是敘述正確的是(請?zhí)钌闲蛱枺?/span>

查看答案和解析>>

同步練習冊答案