【題目】已知曲線C:x2-y2=1及直線l:y=kx-1.
(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且△AOB的面積為,求實(shí)數(shù)k的值.
【答案】(1)(-,-1)∪(-1,1)∪(1,)(2)k=0或k=±.
【解析】
(1)由消去y,得(1-k2)x2+2kx-2=0.再解不等式組即得解.(2)先寫(xiě)出韋達(dá)定理,再求出S△OAB=S△OAD+S△OBD=|x1|+|x2|=|x1-x2|=,再把韋達(dá)定理代入即得實(shí)數(shù)k的值.
(1)由消去y,得(1-k2)x2+2kx-2=0.
由得k的取值范圍是(-,-1)∪(-1,1)∪(1,).
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2).
由(1),得x1+x2=-,x1x2=-.
又∵l過(guò)點(diǎn)D(0,-1),
∴S△OAB=S△OAD+S△OBD=|x1|+|x2|=|x1-x2|=,
∴(x1-x2)2=(2)2,即,
解得k=0或k=±.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)如下表:
溫度 | 21 | 24 | 25 | 27 | 29 | 32 |
產(chǎn)卵數(shù)/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 |
1.946 | 2.398 | 3.045 | 3.178 | 4.191 | 4.745 |
(I)以溫度為23、25、27、29的數(shù)據(jù)分別建立:①和之間線性回歸方程,②和之間線性回歸方程;
(Ⅱ)若以(Ⅰ)所得回歸方程預(yù)測(cè),得到溫度為21、32的數(shù)據(jù)如下:
溫度 | 21 | 32 |
-11.5 | 80.94 | |
1.825 | 4.857 |
試以上表數(shù)據(jù)說(shuō)明①②兩個(gè)模型,哪個(gè)擬合的效果更好.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有、、、四位貴賓,應(yīng)分別對(duì)應(yīng)坐在、、、四個(gè)席位上,現(xiàn)在這四人均未留意,在四個(gè)席位上隨便就座.
(1)求這四人恰好都坐在自己席位上的概率;
(2)求這四人恰好都沒(méi)坐在自己席位上的概率;
(3)求這四人恰好有位坐在自己席位上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人玩錘子、剪刀、布的猜拳游戲,假設(shè)兩人都隨機(jī)出拳,求:
(1)平局的概率;
(2)甲贏的概率;
(3)甲不輸?shù)母怕?/span>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是追蹤調(diào)查200個(gè)某種電子元件壽命(單位:)頻率分布直方圖,如圖:
其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個(gè)說(shuō)法中有且只有一個(gè)與原數(shù)據(jù)相符,這個(gè)說(shuō)法是( )
①壽命在300-400的頻數(shù)是90;
②壽命在400-500的矩形的面積是0.2;
③用頻率分布直方圖估計(jì)電子元件的平均壽命為:
④壽命超過(guò)的頻率為0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省級(jí)示范高中高三年級(jí)對(duì)考試的評(píng)價(jià)指標(biāo)中,有“難度系數(shù)”“區(qū)分度”和“綜合”三個(gè)指標(biāo),其中,難度系數(shù),區(qū)分度,綜合指標(biāo).以下是高三年級(jí) 6 次考試的統(tǒng)計(jì)數(shù)據(jù):
i | 1 | 2 | 3 | 4 | 5 | 6 |
難度系數(shù) xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
區(qū)分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 計(jì)算相關(guān)系數(shù),若,則認(rèn)為與的相關(guān)性強(qiáng);通過(guò)計(jì)算相關(guān)系數(shù) ,能否認(rèn)為與的相關(guān)性很強(qiáng)(結(jié)果保留兩位小數(shù))?
(II) 根據(jù)經(jīng)驗(yàn),當(dāng)時(shí),區(qū)分度與難度系數(shù)的相關(guān)性較強(qiáng),從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即.
(i) 寫(xiě)出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));
(ii) 假設(shè)當(dāng)時(shí), 與的關(guān)系依從(i)中的回歸方程,當(dāng) 為何值時(shí),綜合指標(biāo)的值最大?
參考數(shù)據(jù):
參考公式:
相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了反映國(guó)民經(jīng)濟(jì)各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過(guò)聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉(cāng)儲(chǔ)指數(shù)最大值是在3月份
B. 2017年1月至12月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉(cāng)儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大
D. 2017年11月的倉(cāng)儲(chǔ)指數(shù)較上月有所回落,顯示出倉(cāng)儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義在(-∞,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù),
(1)求證:函數(shù)在(-∞,0)上也是增函數(shù);
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com