【題目】已知函數(shù)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間上是單調(diào)遞增,若,則的取值范圍為_______.
【答案】
【解析】
先將函數(shù)中的變量化簡,再確定函數(shù)f(x)是在實數(shù)集R上單調(diào)遞增,利用函數(shù)的單調(diào)性,即可求得x的取值范圍.
∵lg2lg50+(lg5)2=(1﹣lg5)(1+lg5)+(lg5)2=1
∴f(lg2lg50+(lg5)2)+f(lgx﹣2)<0,可化為f(1)+f(lgx﹣2)<0,
∵函數(shù)f(x)是定義在實數(shù)集R上的奇函數(shù),
∴f(lgx﹣2)<f(﹣1)
∵函數(shù)f(x)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間[0,+∞)上是單調(diào)遞增,
∴函數(shù)f(x)是在實數(shù)集R上單調(diào)遞增
∴lgx﹣2<﹣1
∴lgx<1
∴0<x<10
故答案為:(0,10).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游區(qū)每年各個月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而,第個月從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫,其中,正整數(shù)表示月份,為正整數(shù),.
統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
(i)每年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
(ii)該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
(iii)2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達到最多.
(1)根據(jù)已知信息,試確定一個符合條件的的表達式.
(2)一般地,當該地區(qū)從事旅游服務(wù)工作的人數(shù)在400或400以上時,該地區(qū)也進入了一年中的旅游“旺季”.求一年中的哪幾個月是該地區(qū)的旅游旺季?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}和{bn}是兩個等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時, >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點為圓上一動點,軸于點,記線段的中點的運動軌跡為曲線.
(1)求曲線的方程;
(2)直線經(jīng)過定點,且與曲線交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從全校參加科技知識競賽初賽的學(xué)生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:
(1)樣本的容量是多少?
(2)求樣本中成績在分的學(xué)生人數(shù);
(3)從樣本中成績在90.5分以上的同學(xué)中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,是同一平面內(nèi)的三條平行直線, 與之間的距離是1,與之間的距離是2,三角形的三個頂點分別在,,上.
(1)若為正三角形,求其邊長;
(2)若是以B為直角頂點的直角三角形,求其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某街道居委會擬在地段的居民樓正南方向的空白地段上建一個活動中心,其中米.活動中心東西走向,與居民樓平行. 從東向西看活動中心的截面圖的下部分是長方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長不超過米,其中該太陽光線與水平線的夾角滿足.
(1)若設(shè)計米,米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計與的長度,可使得活動中心的截面面積最大?(注:計算中取3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為軸上的點.
(1)過點作直線與相切,求切線的方程;
(2)如果存在過點的直線與拋物線交于,兩點,且直線與的傾斜角互補,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com