【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計自己的家園.英國數(shù)學(xué)家麥克勞林通過計算得到∠B′C′D′=109°28′16'.已知一個房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
【答案】216
【解析】
表面積分兩部分來求,一是底面,是三個全等的菱形,連接BD,B′D′,易得BD∥B′D′,BD=B′D′=6,再根據(jù)∠B′C′D′=109°28′16',tan54°44′08',得到OC′,B′C′,可計算菱形的面積,二是側(cè)面,是六個全等的直角梯形,由B′C′,結(jié)合BB′,BC,得到CC′,求得梯形的面積,然后兩部分相加即可.
如圖所示:
連接BD,B′D′,則由題意BD∥B′D′,BD=B′D′=6,
∵四邊形OB′C′D′為菱形,∠B′C′D′=109°28′16',tan54°44′08',
∴OC′=226,B′C′=3,
∴CC′=BB′4,
∴S梯形BB′CC′27,
∴S表面積=63216.
故答案為:216.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段是過拋物線的焦點F的一條弦,過點A(A在第一象限內(nèi))作直線垂直于拋物線的準(zhǔn)線,垂足為C,直線與拋物線相切于點A,交x軸于點T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學(xué)科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;
優(yōu)分 | 非優(yōu)分 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級該學(xué)科成績中任意抽取3名學(xué)生的成績,求至少2名學(xué)生的成績?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時的草場植被指數(shù);以上判斷中正確的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a∈R且a≠0).
(1)當(dāng)a時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性與單調(diào)區(qū)間;
(3)若y=f(x)有兩個極值點x1,x2,證明:f(x1)+f(x2)<9﹣lna.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,新型冠狀病毒(2019﹣nCoV)疫情牽動每一個中國人的心,危難時刻全國人民眾志成城.共克時艱,為疫區(qū)助力.我國S省Q市共100家商家及個人為緩解湖北省抗疫消毒物資壓力,募捐價值百萬的物資對口輸送湖北省H市.
(1)現(xiàn)對100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.
(2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i=1,2,3,…,8)的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認(rèn)為樣本點集中在曲線的附近,且:,,,,,其中,,,根據(jù)所給的統(tǒng)計量,求y關(guān)于x回歸方程,并預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元時的月產(chǎn)增量.
附:對于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線v=α+βu的斜率和截距的最小二乘法估計分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援武漢抗擊新冠肺炎疫情,軍隊抽組1400名醫(yī)護(hù)人員于2月3日起承擔(dān)武漢火神山?漆t(yī)院醫(yī)療救治任務(wù).此外,從解放軍疾病預(yù)防控制中心、軍事科學(xué)院軍事醫(yī)學(xué)研究院抽取15名專家組成聯(lián)合專家組,指導(dǎo)醫(yī)院疫情防控工作.該醫(yī)院開設(shè)了重癥監(jiān)護(hù)病區(qū)(),重癥病區(qū)(),普通病區(qū)()三個病區(qū).現(xiàn)在將甲乙丙丁4名專家分配到這三個病區(qū)了解情況,要求每個專家去一個病區(qū),每個病區(qū)都有專家,一個病區(qū)可以有多個專家.已知甲不能去重癥監(jiān)護(hù)病區(qū)(),乙不能去重癥病區(qū)(),則一共有__________種分配方式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com